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For the past 43 years, Sam Gitler has made important contributions to algebraic

topology. Even now at age 70, Sam continues to work actively. Most of his work to

date can be divided into the following six areas.

(1) Immersions of projective spaces

(2) Stable homotopy types

(3) The Brown-Gitler spectrum

(4) Configuration spaces

(5) Projective Stiefel manifolds

(6) Interesting algebraic topology text

1. Immersions of projective spaces

Sam received his PhD under Steenrod at Princeton in 1960 and spent much of the

1960’s lecturing at various universities in the US and UK, but he spent enough time

in Mexico to obtain with José Adem very strong results on the immersion problem for

real projective spaces. The problem here is to determine for each n the smallest Eu-

clidean space Rd(n) in which RP n can be immersed. The related embedding problem

is more easily visualized, and Sam and José also obtained results on the embedding

problem for real projective spaces, but the immersion problem lends itself more read-

ily to homotopy theory, and so it gets more attention by homotopy theorists. An

immersion is a differentiable map which sends tangent spaces injectively, but need

not be globally injective. The usual picture of a Klein bottle ([43]) illustrates an

immersion of a 2-manifold K in R3, but K cannot be embedded in R3.

Many families of immersion and of nonimmersion results are known ([24]), but to

be optimal it must be that RP n is known to immerse in Rd(n) and to not immerse in

Rd(n)−1. The only optimal results that are known are, ordered chronologically:

• n = 2i, d(n) = 2i+1 − 1
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– nonimmersion: Milnor 1957, characteristic classes. ([52])

– immersion: Whitney 1944, differential topology. ([58])

• n = 2i + 1, d(n) = 2i+1 − 1

– nonimmersion: Milnor ([52]).

– immersion: Sanderson 1964, obstruction theory. ([56])

• n = 2i + 2j + 1, 2, 3, i > j ≥ 2, d(n) = 2i+1 + 2j+1 − 2

– nonimmersion: Adem-Gitler 1964, secondary cohomology

operations. ([2])

– immersion: Sanderson. ([56])

• n = 31, d(n) = 53

– nonimmersion: James 1963, Adams operations inK-theory.

([42])

– immersion: Adem-Gitler-Mahowald 1965, obstruction the-

ory and secondary operations. ([3])

• n = 2i + 2, 3, d(n) = 2i+1

– nonimmersion: Baum and Browder 1965, Sqk in projective

Stiefel manifolds. ([8])

– immersion: Sanderson. ([56])

• n = 2i + 4, d(n) = 2i+1 + 2

– nonimmersion: Gitler 1968, Sqk in projective Stiefel man-

ifolds. ([35])

– immersion: Nussbaum 1970, modified Postnikov towers

(MPTs). ([54])

• n = 63, d(n) = 115

– nonimmersion: James. ([42])

– immersion: Davis-Mahowald 1978, MPTs. ([28])

• n = 2i + 2j + 4, i > j ≥ 3, d(n) = 2i+1 + 2j+1 − 1

– nonimmersion: Randall 1985, Smale invariant. ([55])

– immersion: Davis 1983, MPTs. ([26])

• n = 2i + 2j + 11, i > j ≥ 4, d(n) = 2i+1 + 2j+1 + 12

– nonimmersion: Singh 2003, MPTs. ([57])

– immersion: Adem-Gitler-Mahowald. ([3])
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The first unknown question is whether RP 24 immerses in R38.

There are two main points here. First is the rash of activity in the 1960’s. The

immersion problem was really a hot topic then and much progress was made, with Sam

right in the thick of it. Although I wasn’t around then, I would guess, knowing Sam,

that he was probably the leader in pushing all this activity forward. There were two

Adem-Gitler papers ([1], [2]) involving secondary cohomology operations as applied

to immersions that were really a tour de force. In order to combat indeterminacy,

they had to use secondary operations of several variables. Modified Postnikov towers

(MPTs), a form of obstruction theory which, as the above table indicates, have been

a very effective tool, both for immersions and nonimmersions, were developed by

Gitler and Mahowald in the 1960’s ([38]). If ik : BO(k)→ BO denotes the classifying

space for k-dimensional vector bundles and their stabilization, then an n-manifold M

immerses in Rn+k if and only if the map M → BO which classifies its stable normal

bundle lifts to BO(k). The obstructions to the lifting are related to the homotopy

groups of the fiber Vk of ik, and, if the dimension of M is less than 2k − 1, MPTs

enable you to filter the obstructions according to the Adams filtration of π∗(Vk). Most

of these papers in the 1960’s were published in the Boletin. I still consider the Boletin

as the place to publish work related to immersions and projective spaces.

My second main point is that it is only for n close to 2i or 2i + 2j that optimal

values are known. The number α(n), defined as the number of 1’s in the binary

expansion of n, occurs frequently in these results. When α(n) is large, the gaps

between known immersions and nonimmersions can become quite large. The most

comprehensive results are the immersions of Milgram ([51]) obtained using bilinear

maps in 1967, and the nonimmersions that I obtained in 1984 ([23]) using Brown-

Peterson cohomology, following a method introduced by Sam’s PhD student Luis

Astey ([6]). The results are

• If n ≥ 7, RP n immerses in R2n−α(n)−〈0,1,1,4〉 if n ≡ 〈1, 3, 5, 7〉
mod 8, and

• RP 2(m+α(m)−1) does not immerse in R4m−2α(m).

The largest gaps between known immersions and nonimmersions are roughly 5[log2(n)]−
22, when n is just less than a power of 2. I believe that most of the remaining im-

provement will need to come on the immersion side.
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In 1970, Sam gave a survey talk ([36]) on immersions and embeddings at the Madi-

son conference which was very influential for me. I was just starting my thesis work,

and seeing all the methods and results on this concrete problem brought together

elegantly in one place led me to want to try to make my own contributions. Sam

has continued to promote this area of mathematics, for example, by training Jesus

González at Rochester in such a way that he has become a major contributor to this

area ([41])

2. Stable homotopy types

The question of deciding whether the stunted projective spaces FPm+k
m and FP n+k

n

have the same stable homotopy type is a natural one for homotopy theorists. Here

F is the real, complex, or quaternionic numbers, and FPm+k
m = FPm+k/FPm−1. We

are asking if, when suspended enough, these spaces have the same homotopy type.

Because Pm+k
m is the Thom space of the multiple mξk of the Hopf line bundle ξk,

equivalences are obtained if mξk and nξk are J-equivalent, i.e., their sphere bundles

are stably fiber homotopically equivalent, while nonequivalences can be obtained by

applying Adams operations in K-theory. These results usually leave a small gap of

cases which take more care to resolve.

In a 1977 paper, ([32]), Sam, together with Sam Feder, completely resolved the

question when F is the complex numbers or quaternions. Here is the result for CP .

Theorem If k 6= 2 or 4, CPm+k
m and CP n+k

n have the same stable homotopy type if

and only if one of the following conditions holds:

• m− n ≡ 0 mod Ak;

• m− n ≡ 0 mod Ak−1 and m+ n ≡ 0 mod Ak;

• m− n ≡ 0 mod Ak−1 and m+ n+ 2(k + 1) ≡ 0 mod Ak.

Here Ak is the J-order of the Hopf bundle over CP k, which was introduced by

Atiyah-Todd and established by Adams-Walker. I think this Feder-Gitler theorem is

a very elegant result, and the proof is very nice, using clever comparisons of cofiber

sequences to obtain equivalences in the cases which were not easily resolved by the

standard techniques mentioned above.

Also in 1977, Sam wrote a paper with Feder and Mahowald ([33]) in which they

carried out a similar program when F = R, i.e. for stunted real projective spaces.
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This time there were a few of the intermediate cases that they could not resolve. In

a 1986 paper ([29]), Mark and I used more detailed analysis of the Adams spectral

sequence to obtain equivalences in those cases, thus finishing the stable homotopy

type problem for all projective spaces. A nice form for our result is that stunted

real projective spaces are stably equivalent if and only if their J-homology groups are

isomorphic and their J-cohomology groups are isomorphic as graded abelian groups

(with dimension shift).

Jesus González ([39]) obtained a similar complete result for stable homotopy type of

stunted mod p lens spaces when p is an odd prime, as did my PhD student Huajian

Yang for stunted mod 4 lens spaces. For other stunted mod pr lens spaces, work

has been done by Kobayashi ([44]) and by González ([40]), but there are still many

unresolved cases.

3. Brown-Gitler spectra

Probably Sam’s most celebrated work is his construction with Ed Brown of the

Brown-Gitler spectra in a 1973 paper in Topology ([12]). These are 2-local spectra

B(n) satisfying

• H∗(B(n); Z2) ≈ A/A{χ(S qi) : i > n};
• If ν is the normal bundle of an n-manifold embedded in Rn+k,

then there exists a map from the Thom space T (ν) to ΣkB([n
2
])

of degree 1 on the bottom cell.

Here χ denotes the canonical antiautomorphism of the mod 2 Steenrod algebra A. It

was known from earlier work (1964) of Brown and Peterson ([13]) that A{χS qi : i >

[n
2
]} were the classes vanishing on Thom classes of normal bundles of all n-manifolds,

so this spectrum is minimal admitting maps from all such T (ν).

Brown and Gitler constructed the spectrum bearing their name by realizing an

algebraic resolution as a tower of spectra. According to a 1985 lecture by Ed Brown

on the history of Brown-Gitler spectra, Sam’s expertise in the various techniques

utilized in his joint work with Adem, in particular, secondary cohomology operations,

played an essential role in this work.
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This work was motivated by the conjecture that every n-manifold can be immersed

in R2n−α(n). Brown and Peterson had developed an approach to proving this conjec-

ture. They proved in [14] that there is a space BO/In and map gn : BO/In → BO

such that the map M → BO classifying the stable normal bundle of an n-manifold

lifts to a map M → BO/In, and H∗(gn; Z2) is a surjection with kernel the ideal con-

sisting of exactly those Stiefel-Whitney classes which were already known to vanish

on normal bundles of n-manifolds. They hoped to prove that gn factors through a

map BO/In → BO(n − α(n)), which would prove the immersion conjecture. They

proved the analogous statement is true for Thom spectra, i.e. there exists a map from

the Thom spectrum MO/In of BO/In to MO(n− α(n)). They hoped to deThomify

this map.

In a paper in the Annals of Mathematics in 1985 ([21]), Ralph Cohen gave an

argument for carrying out this program. The Brown-Gitler spectra play an important

role in his argument because MO/In splits as a wedge of Brown-Gitler spectra, and

this splitting is used in constructing various maps.

It seemed that Brown-Gitler spectra were popping up everywhere in the late 1970’s

and early 80’s. The Segal Conjecture, which stated that the completed Burnside ring

of a finite group was isomorphic to the 0th stable cohomotopy group of its classifying

space, was a central question in algebraic topology at that time. The Burnside ring

of G is defined by applying a Grothendieck construction to the set of all finite G-sets.

The Segal Conjecture was proved by Gunnar Carlsson in a 1984 paper in the Annals

of Mathematics ([17]). As a key step, he first proved it for elementary abelian 2-

groups in a paper in Topology in 1983 ([16]). His proof of this involved Brown-Gitler

spectra in a very central way. I was working on that conjecture, too, and I remember

that Mark Mahowald had suggested to me that I should consider using Brown-Gitler

spectra.

Mark was very involved in the understanding and applications of Brown-Gitler

spectra. In his 1977 Topology paper ([49]), he used them in a very central way to

establish existence of an infinite family of elements ηj in the stable homotopy groups

of spheres. The map ηj is in the 2j-stem. This was the first infinite family in a fixed

Adams filtration, in this case filtration 2. Prior to this result, there was a conjecture,

called the Doomsday Conjecture (see [53, p.240] for historical comments), which said
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that each Adams filtration contains only finitely many elements of π∗(S
0), and so

Mahowald’s result doomed the Doomsday Conjecture. His proof showed that some

Brown-Gitler spectra could be realized as certain summands in the stable splitting of

Ω2S9. This set off a flurry of activity characterizing Brown-Gitler spectra and finding

them in nature ([15],[22]). Mark’s method of using Brown-Gitler spectra to construct

infinite families in the stable homotopy groups of spheres was mimicked by W.H. Lin

and Nick Kuhn to produce other infinite families ([48], [47]).

Brown-Gitler spectra also appeared centrally in Mark’s splitting of bo ∧ bo ([50]),

which was a major tool in our 1989 Topology paper ([30]) on the image of J , and in

a 1981 paper of Sam, Mark, and me ([27]) on stable geometric dimension. Martin

Bendersky will give a talk here discussing our recent completion of that project ([9]).

4. Configuration spaces

In several papers, Sam has studied the (co)homology of configuration spaces or

their loop spaces. If X is a topological space, then the configuration space F (X,n)

is the subspace of Xn consisting of n-tuples of distinct points of X. In a 1991 paper

([10]), Bendersky and Gitler used simplicial methods to construct a spectral sequence

converging to the cohomology groups of F (M,n) when M is a manifold. This was

related to earlier work of Gelfand-Fuks ([34]) and Bott-Segal ([11]) on the cohomology

of the Lie algebra of tangent vector fields on a manifold. Fred Cohen and Larry Taylor

([20]) had done some related work in 1978.

Fred certainly has a long-standing interest in configuration spaces from many points

of view. Being together at Rochester, it was natural for Sam to get involved with

Fred on some of this. It led to two papers in 2001-2 on loop spaces of configuration

spaces and braid groups ([18],[19]). A pure braid with k strands in a manifold M is k

paths in M which do not collide at any t and which end where they start. When you

picture them as a subspace of M × I, it becomes clear why they are called braids. A

pure braid with k strands in M is just a loop in F (M,k).

The 2002 paper of Sam and Fred ([19]) contains numerous product decomposition

theorems, up to homotopy type. Some which are easy to state are

• if m ≥ 3, ΩF (Rm, k) ' ∏k−1
i=1 Ω(

∨
i S

m−1), and

• if n ≥ 1, ΩF (S2n+1, k) ' ΩS2n+1 × ΩF (R2n+1, k − 1).
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Their main results deal with homology. One such result, which is then generalized in

various ways, is that H∗(ΩF (Rm, k)) is isomorphic as Hopf algebras to the universal

enveloping algebra of the graded Lie algebra Lk(m−2). This is the largest Lie algebra

for which the infinitesimal braid relations are satisfied. It has been studied by Kohno

([45],[46]), in relation to Vassiliev invariants of braids. Here m − 2 is the grading of

the generators and k is the range for the subscripts of the generators Bi,j.

5. Projective Stiefel manifolds

Sam has had a longstanding interest in projective Stiefel manifolds. The Stiefel

manifold Vn,k is the space of k-frames in Rn, and the projective Stiefel manifold Xn,k

is its quotient obtained by identifying a frame with its negative. It admits a canonical

line bundle ξn,k. In 1968, Sam, with David Handel, determined H∗(Xn,k; Z2) as an

algebra over the Steenrod algebra, up to some indeterminacy ([37]). A main reason

for their interest was that if θ is a line bundle over a space Y , then nθ has k linearly

independent sections if and only if there is a map f : Y → Xn,k such that f ∗(ξn,k) = θ.

As mentioned earlier, Sam, in one of his rare solo papers ([35]), was able to use this

method to obtain strong new nonimmersion results for certain RP n.

A natural question to ask about a manifold is whether it is parallelizable; i.e., if the

tangent bundle is isomorphic to a trivial bundle. In a 1986 paper in the Boletin ([5]),

Antoniano, Gitler, Ucci, and Zvengrowski answered this question for all Xn,k except

X12,8. Their answer was that the only parallelizable ones are Xn,n, Xn,n−1, X2n,2n−2,

X4,1, X8,k, and X16,8. The positive results are obtained for various special reasons.

The negative results are mostly obtained by studying K̃O(Xn,k) and seeing that the

tangent bundle does not equal zero here.

I point out here two things. (a) Sam is a problem solver. So am I. I think these

are the kinds of things homotopy theorists should be doing. (b) Sam likes to work in

teams. Many of his papers involve four authors.

In 1999-2000, he put together a team of four Mexicans to attack parallelizability

of complex projective Stiefel manifolds PWn,k. Here you mod out by the S1-action.

With Astey, Micha, and Pastor ([7]), he showed that the only parallelizable ones are

PWn,n and PWn,n−1. The nonexistence was obtained using characteristic classses,
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while existence was obtained by identifying the tangent bundle as 0 in K̃O(PWn,k)

and then destabilizing.

6. Interesting algebraic topology text

Finally I mention the text, Algebraic Topology from a Homotopical Viewpoint, by

Sam together with Marcelo Aguilar and Carlos Prieto, which was published in English

by Springer-Verlag in 2002 ([4]). This is a very ambitious and unusual text. The

main novelty is defining the homology groups of a CW complex X as the homotopy

groups of its infinite symmetric product SP (X). Cohomology groups are defined

as homotopy classes of maps into Eilenberg-MacLane spaces, which are defined as

infinite symmetric products of Moore spaces. Of course, it is a well-known theorem

of Dold and Thom ([31]) that H∗(X) is isomorphic to π∗(SP (X)), but to use this as

the definition of homology groups and show that the major properties of homology

theory can be developed this way is a bold step requiring much ingenuity.

Roughly, the book divides into thirds:

(1) a fairly standard treatment of fundamental group, homotopy

groups, fibrations and cofibrations, and covering spaces;

(2) the novel treatment of homology and cohomology described

above;

(3) a thorough and sophisticated treatment of K-theory, character-

istic classes, and generalized cohomology.

As I wrote in my review in Math Reviews([25]), some topics in homological algebra,

such as the definition of Tor and Ext, were not included in the book, instead requiring

reference to another text. I feel that a first text should include this material. But, all

things considered, I am very impressed that an introductory algebraic topology text

can be organized this way. I learned a lot by reading it.

In conclusion: I have outlined many of Sam’s important contributions to algebraic

topology. Almost as important as the mathematics is the way that Sam has involved

others in his work, and has brought younger Mexican mathematicians into algebraic

topology in such a way that they have made major contributions. Thank you, Sam,

for all this.
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