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Some additional function spaces and operators

Let M be a positive integer satisfying M > N. We fix a system of
representatives /;s for the quotient

GM = (l —I—pNZp) /pMZp.
This means that
B.n(l)= U B-m(l),
lieG}

where B_;(J) = {X €Qp;|x— J|p < p*L}. Now, we set

G’(\//I = |_| GIM.

1eGy
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Some additional function spaces and operators

Since K is the disjoint union of the I + pNZ,, for I € GJ,
Kn=U U +p"Z,= U 5+p"2Z,.

leGy 1,eGM LeGH

We set Xy, M > N, to be the IR-vector space of all the test functions
supported in ICp of the form

p()= L @) (pMx—1l,). o(h) R,

/jEG/\\I/’
endowed with the ||-|| ,-norm. This is a real Banach space.

From now on, we set Xy := C (Kn, R) endowed with the |[|-||,-norm.
This is also a real Banach space.
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Some additional function spaces and operators

For M > N, we define Py € B(Xw, Xu), the bounded linear operators
from Xy into Xy, as

Pug(x)= L @(h)Q(p" |x~1l,). (1)

lieGy

We denote by Epy : Xpp < Xeo, M > N, the natural continuous
embedding, notice that ||[Ey|| < 1, and that Py Epy¢@ = ¢ for ¢ € Xy,
M>N.

Whenever be possible, we will omit in our formulas operator Ejy, instead
we will use the fact that Xy — Xoo, M > N.
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Some additional function spaces and operators

With the above notation, the following assertions hold: (i) ||Pwn|| < 1; (i)
limy—co [|Pre — ||, =0 for ¢ € Xe.

We now consider the real Banach spaces Xo @ Xoo, Xpp © Xy for M > N,
endowed with the norm ||u @ v|| := max {||ul|o . ||Vl }- We will identify

u @ v with the column vector
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Conditions on the nonlinearity

With respect to the nonlinearity we assume the following. We fix a,
b e R, with a < b, and assume that

(i) f.g:(a b) x(ab) —TR;
(i) f.g € Ct((ab)x(ab));

(i) Vf(x,y)#0and Vg(x,y) # 0 for any (x,y) € (a, b) x (a, b).
(Hypothesis 1)
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Conditions on the nonlinearity

Now we define
U={veXs;a<v(x)<bforanyxey}. (2)

Notice that U is an open set in Xw. Indeed, take § > 0 sufficiently small
and v e U, if

he B(v,8) ={he Xx;||v—hl|, <6},
then

a< —d0+ min v(x) < h(x) < 6+ max v(x) < b,
xEy xEXy

for ¢ sufficiently small.
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Conditions on the nonlinearity

y [ f(u,v)

,with uédv e Ud U, we mean the mappin
)| e

[;} UpU — RHR

udv — f(u,v)dg(uv).
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Two Cauchy problems

é ?j } the operator acting on Xo D X as

o o)) =l ]

We denote by eL [

te[0,71), x € Ky;

L u(0)dv(0)=uwdweUaU.
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Two Cauchy problems

The Cauchy problem for the following discretization of (4), with

LM = L |XM:

( ; u™) (¢) F(u™) (t), vM) (1)) el u™ ()
ot = + ’
’ { vM) (¢) ] L(u“”) (), v (1)) ! edLyvi™ (t) ]

te[0,7), x € Ky;

uM)(0) @ vIM) (0) € UN Xy & UN Xy,
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The Cauchy problem in X.

We use the following notation:

Xoo If =00 L if e=o0
X. = y L. = '
Xy if e=M Ly if e=M

and u(®) (t) @ v(*) (t) means u (t) D v (t) if ® = co. By using this
notation the Cauchy problems (4)-(5), with initial data in

UNXy @ UN Xy, can be written as
( ul® (1) F(ul® (), v(®) (1) eLou(® (1)
9 = + :
edLov(® (1)

L] L e e, @)

te€[0,7), x € Ky;

| v (0) & v(®)(0) e UNXy & UN Xy.
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Some Wikipedia

Formal definition [edit]

A strongly continuous semigroup on a Banach space X is amap T’ : Ry — L(X) such that
1.7(0) = I, (identity operator on X)
2.¥t,8>0: T(t+s) =T(t)T(s)
3. Vag € X: |T(t)zg —zol| = 0,ast 0.

The first two axioms are algebraic, and state that T is a representation of the semigroup (R+ s +); the last is topological, and states that
the map 7" is continuous in the strong operator topolagy.

Infinitesimal generator |edi]

The infinitesimal generator A of a strongly continuous semigroup T is defined by

Am:l_i_m1

im (T(t) -1z

whenever the limit exists. The domain of A, D(A), is the set of x X for which this limit does exist; D(A) is a linear subspace and A is linear
on this domain.['] The operator A is closed, although not necessarily bounded, and the domain is dense in X.[2]

The strongly continuous semigroup T with generator A is often denoted by the symbol . This notation is compatible with the notation for
matrix exponentials, and for functions of an operator defined via functional calculus (for example, via the spectral theorem).
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Some Wikipedia

Abstract Cauchy problems [edit]
Consider the abstract Cauchy problem:
' (t) = Au(t), uw(0) ==z,
where A is a closed operator on a Banach space X and x&X. There are two concepts of solution of this problem:

» a continuously differentiable function wu:[0,«)—Xis called a classical solution of the Cauchy problem if u(t) € D(A) for all > 0 and it
satisfies the initial value problem,
» a continuous function ¢:[0,=) — Xis called a mild solution of the Cauchy problem if

t t
f u(s)ds € D(A) and A/ u(s) ds = u(t) —z.
0 0
Any classical solution is a mild solution. A mild solution is a classical solution if and only if it is continuously differentiable.!*]
The following theorem connects abstract Cauchy problems and strongly continuous semigroups.

Theorem'®! Let A be a closed operator on a Banach space X. The following assertions are equivalent:
1. for all x&X there exists a unique mild solution of the abstract Cauchy problem,
2. the operator A generates a strongly continuous semigroup,
3. the resolvent set of A is nonempty and for all x € D(A) there exists a unique classical solution of the Cauchy problem.

When these assertions hold, the solution of the Cauchy problem is given by () = T{f)x with T the strongly continuous semigroup
generated by A.
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Mild solutions

We use the following conditions:

Condition AS1
Xe & X, is a real Banach space.

Condition AS2

eL . .
The operator is the generator of a strongly continuous

edL,
semigroup {e”"'}tzo & {egdtL.}tZO satisfying

<1 fort>0,

) eftle o gediLe
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Mild solutions

Condition AS3
Let U C X be the open set defined in (2), and let
[ f } (U U) — Xeo ® Xoo
g
be the continuous mapping defined in (3). Then for each

ug ® vy € U U, there exist § > 0 and L < oo such that

f(ui, vi) f(up, v2)
- <Lf(un—w)® (vi—w)|l, (7)
g(ul,vl) g(uz,vz)

for uy @ vi, ur @D vy in the ball B(UO b Vo,5).
Take
[;] (UM X @ U N Xny) — Xo & Xon, (8)

since Xy — X, condition (7) holds for map (8).
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Mild solutions

Definition
For o € (0, 7], let Smild (To, Xe & Xo) be the collection of all
u® @ v(®) € C([0,10), UNXs @ UN X,) which satisfy

t
/u()()dseDom(eL = X, and / s)ds € Dom (edLs) = X
0
and

u®) (£) = u®) (0) +eLa [y u®) (s)ds = [y £ (ul®)(5),v(*) (s)) o

v(®) (t) — v(*) (0) 4 edL, fot v(®) (s)ds = fo ( () (s), v(® (s)) ds,

for t € [0, Tg). The elements of Swig (To, Xe @ Xe) are the called mild
solutions of (6).
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Mild solutions

By using well-known results from semigroup theory, we have
u® @ v®) e Sy (To, Xe @ X,) if and only if
W ev® e C(0,1),UNX.®UNX,) (9)

and

U (1) = esthey(®) (0) + [felt-SIler (u(.) (s), v(® (5)> ds

VO (1) = e tey(®) (0) + fOt ed(t=s)leg (u(.) (s), v(®) (S)> ds,
(10)
for t € [0, To).
The following result shows that Hypothesis 1, which also implies Condition
AS3, implies that any mild solution is a classical solution.

Swiid (To, Xe ® Xa) € C1([0,T0), UNXe ® UNX,).
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Theorem

For each u((;) @ vé') e UNXy @ UN Xy, there exists T (0, (0 € (0, 7)
VA
and u® @ v(®) ¢ Swild (T (@) (o), Xo P X.) such that
up “Dvy

u® (0) e v(® (0) = u(g') ® v0(°). Furthermore,

lim sup Hu/(:) (t) @ v,E') (t) — ut®) (t) ® v(® (t)H =0,
koo ostst ) @)
up ~ Vg

where u,(:) @ V,E.) e C( [0, T, 0g (.J UNXe d UN X.) are defined by
Uy ~Dvp
ui.) (t) ® vl(‘) (t) = u(().) @ Vé.) and

U;(:JZl (t) = stL.u + ff e(t—s)Le £ <u£.) (s), vk(.) (5)) ds
V[E;r)l (t) _ gedils VO.) + fo esd (t—s)Le g (U;((.) (5) , VIE.) (S)) ds,

for t € [o,r g (.)] and k € N\ {0}.
tg "V
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The Brusselator

Take A > 0 and B > 0, the Brusselator on X, is the following
reaction-diffusion system:

u(t),v(t) e CH[0,T), X);

%—EL.U(X,t):A—(B—i—l)u—Fuzv (11)
av(.;# —edLev (x,t) = Bu — u?v,

for t € [0, T), x € Ky. This system has only a homogeneous steady state:
u=A v==5 Weconsider f(u,v) =A— (B+1)u+ v,

g(u,v) = Bu — t?v as functions defined on
B B
(—=6+AJ+A) X (—(5+A,5+A> C (a, b) x (a,b),

for § > 0 sufficiently small so that (0,0) ¢ (a, b) x (a, b).
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The Brusselator

Notice that
Vf(u,v) =(0,0) < (u,v) € {0} xR and Vg(u,v) # (0,0) for any (u, v)

Then, there exist a, b € R such that Vf |, 4)x(a,5)7 (0,0) and
V& |(ab)x(ap)7 (0,0), and consequently Hypothesis 1 holds. Now, we
take the subset

B
U:={reXe;|r—Alle <5}@{sexoo;uh—A <(5} cuaU.
Then for any initial datum in UNX, & X,, system (11) has a unique

solution, cf. Theorem 4 and Lemma 3.
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Existence of good approximations

Theorem

Take ug® vy € U@ U. Let u@ v be the mild solution of (4), and let
uM) @ v(M) pe the mild solution of (5) with initial datum
u™) (0) & vIM) (0) = (Py @ Pum) (uo © vo). Then

lim sup
M—oop<t<t

uM () & v (£) —u(t) ® v (t)H —0,

where T < Tmax, and Tmax IS the maximal interval of existence for the
solution u (t) & v (t) with initial datum uy & v.
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The spectrum of operator L

@ From now on, we assume that G is an unoriented graph, with a
symmetric adjacency matrix [Ay], 1eGd such that its diagonal
contains zeros.
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The spectrum of operator L

@ From now on, we assume that G is an unoriented graph, with a
symmetric adjacency matrix [Ay], 1eGd such that its diagonal
contains zeros.

o The eigenvalues, y,, | € GJ, of [LJ,]JJGGRI are non-positive and
max;eqo {p;} =0. If Ay, I € G, are the eigenvalues of [AJ[]Jylecl%,

with multiplicities mult(A;), then the eigenvalues of the discrete
Laplacian are

u, = A — 7y, with multiplicity mult(A,), for | € G.
We set X, ® C for the complexification of X,. In particular,

Xeo @C =C (Kp, C), with the L*-norm. Then L : X ® C =X ® C
is linear bounded operator. We set Ly, := L |x,,ac.
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The spectrum of operator L

The operator L has a unique extension to L?(Ky,C) as a bounded linear

operator.

The operator L : L?(Ky,C) — L?(Ky,C) is compact.

Since L is a compact operator on L?(Ky,C), every spectral value x # 0 of
L (if it exists) is an eigenvalue. For k # 0 the dimension of any eigenspace

of L is finite.
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The spectrum of operator L

o Let Ay, I € G,(\), be the eigenvalues of the matrix [AJ/]JYIEGI(\]I, in this

list repetitions may occur, with multiplicity mult(A;). Then the
eigenvalues of L |x,oc= Ly are exactly the eigenvalues of the matrix
[Ay — ')/,5J/]JJGG/(\)I, which are

#, = A —,, for I € Gy, with multiplicity mult (A;) .
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The spectrum of operator L

o Let Ay, I € G,(\), be the eigenvalues of the matrix [AJ/]JYIEGI(\]I, in this

list repetitions may occur, with multiplicity mult(A;). Then the
eigenvalues of L |x,oc= Ly are exactly the eigenvalues of the matrix
[Ay — ')/,5J/]JJGG/(\)I, which are

#, = A —,, for I € Gy, with multiplicity mult (A;) .

o The eigenvalues, y,, | € GJ, of [LJ,]JJGGRI are non-positive and
max;co {};} = 0. We denote the eigenfunctions of [LJ/]J’IGGI% as
@, 1 € Gy.
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The spectrum of operator L

Let [CHJEGR/ be an eigenvector corresponding to y,, by identifying it with

the function

9, (x):= Y O (pN Ix — J|p> eXy®C, chec,
JeGH

and since Xy @ C —Xoo ®C and L : Xy @ C — Xy ® C, we have
@, GX00®C;
Lo, = w9,

The ¢;s form a C-vector space of dimension mult(A;).
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The spectrum of operator L

We now recall that the set of functions {¥,,;} defined as

Yoo (x) = P75, (0 7x) Q (17 x = n], ). (12)

where r € Z, j € {1,---,p—1}, and n runs through a fixed set of
representatives of Q,/Z,, is an orthonormal basis of L2 (Qyp).

Furthermore,
/ ¥, (x) dx = 0. (13)
Qp

This result is due to S. Kozyrev.
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The spectrum of operator L

The functions of the form
N “N_1.
TfN(p—NI)j (x) = P2 Xp (P N 1JX) Q (PN |x — /|p) ' (14)

for I € GY,j € {1,---,p—1} are the functions in Kozyrev's basis
supported in Ky = U’GGR/ I+ pNZp.

A direct calculation using (13) shows that

LYy (X) = =711¥_nipni)) (15)

forany/GG,(\),,jE{l,---,p—l}.
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Theorem

The operator L : L2(Ky,C) — L?(Ky, C) is compact. The elements of
the set:

{M =yt € G\ {h}U{—7;! € Gy} C (—00,0),

where {A; — v, }e6o0 (1} are the non-zero eigenvalues of matrix
(L], jecy are the non-zero eigenvalues of L. The corresponding
eigenfunctions are

o1l

Furthermore, the set (16) is an orthonormal basis of L?>(Ky, C), and
LQ(ICN,C) =Xy®C @ ﬁg(KN,C), (17)

where L3(Ky,C) = {f € L(Kn,C); [y, fox = o}.
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We now consider a homogeneous steady state (ug, vp), which is a
nonnegative solution of

f(u,v)=g(uv)=0. (18)

Since u, v are real-valued functions, to study the linear stability of
(ug, vp), we can use the classical results.

Following Turing, in the absence of any spatial variation, the homogeneous
state must be linearly stable. With no spatial variation u, v satisfy

g‘t’ (x,t) =f(u,v)
(19)

%—‘;(X, t)=g(u,v).

Notice that (19) is an ordinary system of differential equations in R?.
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Now, for & > 0 sufficiently small and (ug, vp) as in (18), we define

U(S,uo @ U(S,vo =
{n@wme C(Ky,R)d C(Kn,R);[Jur — ol <6, ||lvi — vl <0}

Then, the Cauchy problem:

udve C! ([0, TO) ) U(S,uo S5 U5,Vo) '
u(t) ] B ! f(u(t), v(t))
v (t) glu(t), v(t))

u(0) B v (0) € Us yy @ Us.vy,
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where

has a classical solution.

Our goal is to give an asymptotic profile as t tends infinity of this mild
solution (the Turing instability criteria). We linearize system (20) about
the steady state (up, vp), by setting

wi u— up
w = = : (21)
Wo vV —\V
By using the fact that f and g are differentiable, and assuming that
lw|| = ||w1 @ wa|| is sufficiently small, then (19) can be approximated as
d
520t =Jw, (22)
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where
of of
ou ov qu fvo
]Iuo,vo = ]I = 5 5 (UOv VO) =
w o 8w 8w
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We now look for solutions of (22) of the form
w(t;A) = eMwy. (23)

By substituting (23) in (22), the eigenvalues A are the solutions of

det (J — AI) =0,
i.e.
A2 — (Tr]) A +det] = 0. (24)
Consequently
1 2
A:Q{m] + /() —4det]]}. (25)

The steady state w = 0 is linearly stable if Re A < 0, this last condition is
guaranteed if

Tr] <0 and det] > 0. (26)
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We now consider the full reaction-ultradiffusion system (20). We linearize

it about the steady state, which with (21) isw =0 := 8 ] , to get
udv e Ct ([O,T) , Ué,uo D U5’V0) ;
dw(x,t) = (J+eLD)w(x,t), t € [0,7); (27)

u(0) @ v (0) € Us .y ® Us,y,,

where J 4 eLID is a strongly continuous semigroup on

C(Kn,R)&® C(Kn,R).

Furthermore, (27), has also a unique solution, when L is considered as an
operator on L2 (ICN, C), for this reason, we can use the orthonormal basis
given in Theorem 8 to solve (27) in L? (K, C), by using the separation of
variables method, then, the solution of the original problem is exactly the
real part of the solution of (27) in L2 (Ky, C).
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To solve the system (27) in L2 (K, C), we first consider the following
eigenvalue problem:

LDw, (x) = kwy(x)
(28)
Wy, € L2 (]CN,C) D L2 (’CN,C) ,

which has a solution wy = wy 1 @ wy > due to Theorem 8, where

Wi, 1, W2 € { i e GR/}U{T_N([)N/)J‘;I € G,(\J,,jG {1,---,p— 1}}
el
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We look for an solution of type

W(X, t) = Z Z a/je/\t‘P_,\,(pr,)j + Z b/(pl (29)

1eGy jef{l,-,p—1} 1€GY,

where the vectors aj;, b, are determined by the Fourier expansion of the
initial conditions. Substituting (29) with (28) in (27), we obtain that the
existence of a non-trivial solution w(x, t) requires that the As satisfy

det (A —J —exID) =0, (30)
ie.,
A —{(1+d)ex+ TrJ} A+ h(x) =0, (31)
where
h (k) == e2dx® + ex (dfy, + gv,) +det]. (32)
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When x = 0. The steady state (ug, v) is linearly stable if both solutions
of (31) have Re (A) < 0.

The steady state is stable in absence of spatial effects, i.e.

For the steady state to be unstable to spatial disturbances we require
Re (A (x)) > 0 for some & # 0.

This happens if if h(x) < 0 for some x # 0 in (32).
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This is a necessary condition, but not sufficient for Re (A (x)) > 0. For
h (x) to be negative for some nonzero «, the minimum hpi, of h(x) must
be negative. An elementary calculation shows that

2
hmin = {det]] — (Gt 6] } :

4d (33)

and the minimum is achieved at

— (deO +gvo)
min — 34
K 2ed (34)
Thus the condition h (x) < 0 for some & # 0 is

(dfy, + gv0)2

2d > det]. (35)
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A bifurcation occurs when hy,i, = 0, for fixed kinetics parameters, this
condition,
(dfuy + 81)°
4d '
defines a critical diffusion d., which is given as an appropriate root of

det] = (36)

fo dZ + 2 (2f8u, — fur8vo) de + g2y = 0. (37)

up“c

For d > d. model ((20)) exhibits Turing instability, while for d < d. no.
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When d > d., there exists a range of unstable of positive wavenumbers
k1 < k < K2, where k1, kp are the zeros of h(x) = 0, see (32) and (35):

-1 2
Ky = 2d {(dfuo +gv0) - \/(dqu +gv0) —4ddet]]} <0

—1
KL= o {(dfqurgv0 +\/ (dfuy + 81, ) 4ddet]I} <0
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In the solution w (x, t) given by (29), the dominant contributions as t
increases are the modes for which Re A (k) > 0 since the other modes
tend to zero exponentially, thus, if

{keo(L)~{0};x1 <k <rKa} #D,

then

wixt) ~ Y YAk (o x—1,) + (38)

K1<k<wko |

Y Y Auep? cos <{p‘N‘1jX}p> Q(p" x—1],) +

K1<x<ky [

Y Y BjeeMp?sin ({lejX}p> §) (PN |x — I|p>

K1 <xk<wa [,j

for t — —+00. In the above expansion all the sums run through a finite
number of indices.
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Theorem

Consider the reaction-diffusion system (27). The steady state (ug, vy) is
linearly unstable (Turing unstable) if the following conditions hold:

(T1) Tr] =fy, + &, <O;

(T2) det] = fu,8v, — fup8up > 0;

(T3) dfy, + g4, > 0;

(T4) (deo +gVo)2 —4d (fUOgVO - fVOgUO) > 0;

(T5) {k e o (L)~ {0};x1 <x <Ko} #D;

(T6) the derivatives f,, and g,, must have opposite signs.

Furthermore in (20), we can take To = +oo, for any initial data in

Us,up @ Us,vp-

Theorem 9 is also valid for reaction-diffusion systems on Xy, for M > N.

v
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