
Scalar fields in p-adic QFT
Joint work with W. A. Zúñiga and J. A. Vallejo
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Goals

• In ”M. L. Mendoza-Mart́ınez, J. A. Vallejo, W. A.
Zúñiga-Galindo. Acausal quantum theory for
non-Archimedean scalar fields Reviews in Mathematical
Physics. Vol. 31, No. 4 (2019)”. We established that:

• We compute explicitly the fundamental solutions for p−adic
pseudodifferential operators of Klein-Gordon Type.

• We present the second quantization of the solutions of these
Klein-Gordon equations.

• Present the construction of a family of quantum scalar fields
over a p−adic spacetime which satisfy p−adic analogues of
the Gårding–Wightman axioms.
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Physical Motivations

Two sets S1,S2 ⊂ R4 are called spacelike separated if x ∈ S1 and
y ∈ S2 implies that |x − y |2 < 0. If f , g ∈ S(R4) are spacelike

separated then [Φ(f ),Φ(g)] = 0.

In the 80’s I. Volovich proposed that spacetime on Planck
distances has a non-Archimedean structure.



The acausal spacetime

Choose a prime p. We set

B(x , y) := x0y0 − sx1y1 − px2y2 + spx3y3,

where s ∈ Z is a quadratic non-residue modulo p, i.e, the
congruence x2 ≡ s mod p does not have solution. Then B(x , y)
is a symmetric non-degenerate Qp-bilinear form on Q4

p ×Q4
p and
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0 − sx2

1 − px2
2 + spx2

3 .

In addition, q(x) is the unique (up to linear equivalence) elliptic
quadratic form in dimension four. Minkowski Fourier transform

(Fg)(k) =

∫
Q4

p

χp(B(x , k))g(x)dµ(x), dµ(x) = C (q)dnx .



The acausal spacetime

The orthogonal group O(q) is defined to be

O(q) = {Λ ∈ GL4(Qp) : B(Λx ,Λy) = B(x , y)}
= {Λ ∈ GL4(Qp) : ΛTG Λ = G}.

where G =


1 0 0 0
0 −s 0 0
0 0 −p 0
0 0 0 sp

 q(x) = xTGx .
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O(q) = {Λ ∈ GL4(Qp) : B(Λx ,Λy) = B(x , y)}
= {Λ ∈ GL4(Qp) : ΛTG Λ = G}.

where G =


1 0 0 0
0 −s 0 0
0 0 −p 0
0 0 0 sp

 q(x) = xTGx .

For t ∈ Q×p , put Vt := Vt(q) = {k ∈ Q4
p : q(k) = t}.

Then orthogonal group O(q) acts transitively on Vt .



The acausal spacetime

Set
V := {k = (k0, k) ∈ Qp ×Q3

p; q(k) = 1}.

1 = q(k) = k2
0 − q0(k), where q0(k) = sk2

1 + pk2
2 − spk2

3

We now define in Uq ⊂ Q3
p, two analytic functions as follows:

Uq → Qp

k → ±
√

1 + sk2
1 + pk2

2 − spk2
3 =: ±

√
ω (k),



The acausal spacetime

To define positive and negative, we need a multiplicative character
that takes two values

Q×p → {1,−1}

x → π(x)

x > 0 if π(x) = 1 x < 0 if π(x) = −1
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√
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W .

W =
{

(k0, k) ∈ Z4
p; q(0, k) = 1

}



The restricted p−adic Poincaré group

Definición

The restricted p-adic Lorentz group is

L↑+ =
{

Λ ∈ O(q); Λ
(
V±
)

= V±
}
.

The restricted p−adic Poincaré group is P↑+ the set of pairs (a,Λ),

where a ∈ Q4
p and Λ ∈ L↑+, with the group operation

(a,Λ1) (b,Λ2) = (a + Λ1b,Λ1Λ2) .
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.

The restricted p−adic Poincaré group is P↑+ the set of pairs (a,Λ),

where a ∈ Q4
p and Λ ∈ L↑+, with the group operation

(a,Λ1) (b,Λ2) = (a + Λ1b,Λ1Λ2) .

The group P↑+ acts on Q4
p through (a,Λ) x = Λx + a.



Klein-Gordon type pseudodifferential equations

Definición

For α > 0, m ∈ Q×p , and q as before, let us put:

�q,α,m = F−1 ◦ |q−m2|αp ◦ F , (1)

Operators of this type are called (1), p-adic pseudodifferential
Klein-Gordon operators.

Definición

We say that Eq,α ∈ D′C is a fundamental solution for

�q,αu = ϕ, (2)

if u = Eq,α ∗ ϕ is a solution to (2) in D′C, for any ϕ ∈ DC.



Fundamental solutions

Theorem (1) M. L. Mendoza, J. A. Vallejo, W. A. Zúñiga

There exist fundamental solutions Eq,α to �q,α which are invariant
under the action O (q). Moreover, the distributions Eq,α satisfy:

(i)
F(Eq,α) = F(E 0

q,α) + Cδ(q− 1), (3)

where C is a non-zero complex constant and F(E 0
q,α),

δ(q− 1) are distributions invariant under O(q).

(ii)
1VF(Eq,α) = Cδ(q− 1). (4)

In particular, the restriction of F(Eq,α) to V is unique up to
the multiplication by a non-zero complex constant.



Fundamental Solutions for p−adic pseudodifferential
Operators of Klein-Gordon Type

F
[
E 0
q,α

]
is a linear combination of distributions of any of the types∫

Q4
p\V
|q(x)−1|−αp θ(x) d4x or pα

∫
Zp

|u0|−αp (Θb(u0)−Θb(0)) du0.



Fundamental Solutions for p−adic pseudodifferential
Operators of Klein-Gordon Type

Now consider the non-homogeneous p−adic Klein-Gordon
equation:

�q,αu (t, x) = h (t, x) , (5)

where (t, x) ∈ Qp ×Q3
p and h (t, x) ∈ DC(Qp ×Q3

p).



Theorem (3) M. L. Mendoza, J. A. Vallejo, W. A. Zúñiga

(i) The equation
�q,αu (t, x) = 0 (6)

admits plane wave solutions: χp {−B ((t, x) , (E±,κ))} is a
weak, solution of (6). Where (E±,κ) ∈ V± with
E± = ±

√
ω (κ).

(ii) The distributions∫
Uq

χp

{
−B

(
(t, x) ,

(√
ω (k), k

))} d3k∣∣∣√ω (k)
∣∣∣
p

+

∫
Uq

χp

{
B
(

(t, x) ,
(
−
√
ω (k), k

))} d3k∣∣∣√ω (k)
∣∣∣
p

are the unique weak solutions of (6) invariant under L↑+.



Theorem (3) M. L. Mendoza, J. A. Vallejo, W. A. Zúñiga

(iii) The distributions

u(t, x; A,B,C ) = E 0
q (t, x) ∗ h (t, x) +

C

∫
Uq

{
χp

(
−
√
ω (k)t + B0 (k, x)

)
A (k) +

χp

(√
ω (k)t + B0 (k, x)

)
B (k)

}
× d3k∣∣∣√ω (k)

∣∣∣
p

,

where C is a non-zero complex number, and A (k),
B (k) ∈ DC(Q3

p), are weak solutions of (5).



Nuclear Hilbert spaces

The construction of a suitable analog of the Schwartz test
functions is of the utmost importance.

Definición

[ W. A. Zúñiga, 2017 ]. For f , g ∈ DK, with K = R,C, put:

〈f , g〉l :=

∫
Q4

p

[ξ]lp f̂ (ξ)ĝ(ξ)d4(ξ),

for l ∈ N, with the overbar denoting complex conjugate. Also,

H∞(Q4
p,K) := H∞(K) =

⋂
l∈N
Hl(K).



Nuclear Hilbert spaces

The mapping

�q,α : H∞(K) → H∞(K)

h → �q,αh

is a well-defined continuous linear operator between locally convex
spaces.



Fock spaces

We define the symmetric Fock space over H = L2
C (V +, dλ) as

Fs(H) = ⊕∞n=0H
(n)
s , where H(n)

s = SnH(n).

We denote by Sn : H(n) → SH(n), the symmetrization operator,
and S = ⊕∞n=0Sn
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We define the symmetric Fock space over H = L2
C (V +, dλ) as

Fs(H) = ⊕∞n=0H
(n)
s , where H(n)

s = SnH(n).

We denote by Sn : H(n) → SH(n), the symmetrization operator,
and S = ⊕∞n=0Sn ∀f ∈ H∞ (R). We define the operator Φ

Φ : H∞ (R) → OP(Fs(H))
f → ΦS(Rf )

Let H = Fs(L2
C (V +, dλ)), U = Γ (U (·, ·)) = ⊗n

k=1U (·, ·), where

(U (a,Λ)ψ)(k) = χp(B(a, k))ψ(Λ−1k), Φ and D = F0.



A p−adic scalar QFT is a set {H,U,Φ,D} satisfying

p-adic Gårding–Wightman axioms

1. Relativistic invariance of states: H is a separable Hilbert space
and

U(·, ·) : P↑+ −→ U(H).

is a strongly continuous unitary representation.

2. Spectral condition: There exists a measure EV+ on Q4
p

corresponding to U(a, I ) supported on S(V +). (The
topological closure of the additive semigroup generated by the
vectors of V +).

3. Existence of a vacuum. ∃! Υ0 ∈ H � U (a, I ) Υ0 = Υ0 ∀
a ∈ Q4

p, this vector is called the vacuum.



p-adic Gårding–Wightman axioms

4. Invariant domains for the fields: ∃ D ⊂ H and a map from
H∞ (C) to the unbounded operators on H such that:

(i) ∀ f ∈ H∞ (C), it is D ⊂ Dom (Φ (f )), D ⊂ Dom
(
Φ (f )∗

)
, and

Φ (f )∗ � D = Φ
(
f
)
� D.

(ii) Υ0 ∈ D, and Φ (f ) D ⊂ D ∀ f ∈ H∞ (C).
(iii) For any fixed ψ ∈ D, the mapping f → Φ (f )ψ is linear in f .

5. Regularity of fields: ∀ ψ1, ψ2 ∈ D, the mapping

f → 〈ψ1,Φ (f )ψ2〉H

lies in H∗∞ (C).



p-adic Gårding–Wightman axioms

6. Poincaré invariance of the field.: ∀ (a,Λ) ∈ P↑+,
U(a,Λ)D ⊂ D, and ∀ f ∈ H∞ (C), ψ ∈ D,

U (a,Λ) Φ (f )U (a,Λ)−1 ψ = Φ ((a,Λ) f )ψ,

7. Local causality. If f , g ∈ DC
(
Z4
p

)
, then

[Φ(f ),Φ (g)] Ψ = (Φ(f )Φ (g)−Φ (g) Φ(f )) Ψ = 0, ∀ Ψ ∈ D.

8. Ciclicity of vaccum: The set D0 of finite superpositions of
vectors Φ (f1) · · ·Φ (fn) Υ0 is dense in H.



p-adic Gårding–Wightman axioms

Theorem (2) M. L. Mendoza, J. A. Vallejo, W. A. Zúñiga

(i) The set {
Fs(L2

C
(
V +, dλ

)
), Γ (U (·, ·)) ,Φ,F0

}
satisfy the p−adic Gårding–Wightman axioms.

(ii) For any f ∈ H∞ (C),

Φ (�q,αf ) = 0.
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