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Goals

In "M. L. Mendoza-Martinez, J. A. Vallejo, W. A.
Ziiiga-Galindo. Acausal quantum theory for
non-Archimedean scalar fields Reviews in Mathematical
Physics. Vol. 31, No. 4 (2019)". We established that:

We compute explicitly the fundamental solutions for p—adic
pseudodifferential operators of Klein-Gordon Type.

We present the second quantization of the solutions of these
Klein-Gordon equations.

Present the construction of a family of quantum scalar fields
over a p—adic spacetime which satisfy p—adic analogues of
the Garding—Wightman axioms.



Physical Motivations

Two sets Si, Sp C R* are called spacelike separated if x € S; and
y € S, implies that |[x — y|? < 0. If f,g € S(R*) are spacelike

separated then [®(f), ®(g)] = 0.

In the 80's I. Volovich proposed that spacetime on Planck
distances has a non-Archimedean structure.



The acausal spacetime

Choose a prime p. We set
B(x,y) 1= xoy0 — SX1y1 — PXay2 + Spx3Y3,

where s € Z is a quadratic non-residue modulo p, i.e, the
congruence x> = s mod p does not have solution. Then B(x, y)
is a symmetric non-degenerate Q,-bilinear form on Qf x Q3 and
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q(x) is a non-degenerate quadratic form on Qj.

q(x) = B(x,x) = Xg — SX12 - p)<22 + spxg?.

In addition, g(x) is the unique (up to linear equivalence) elliptic
quadratic form in dimension four.



The acausal spacetime
Choose a prime p. We set

B(x,y) := Xoyo — SXLy1 — PXoy2 + SpX3y3,

where s € 7Z is a quadratic non-residue modulo p, i.e, the

congruence x> = s mod p does not have solution. Then B(x, y)

is a symmetric non-degenerate Q,-bilinear form on Q4 x Q3 and
q(x) is a non-degenerate quadratic form on Qj.

q(x) = B(x,x) = x§ - SX12 — px22 + spxg.

In addition, g(x) is the unique (up to linear equivalence) elliptic
quadratic form in dimension four. Minkowski Fourier transform

(Fg)(k) = /@4 Xp(B(x, k))g(x)du(x), du(x) = C(q)d"x.

P



The acausal spacetime

The orthogonal group O(q) is defined to be

O(q) = {A e GL(Qp): B(Ax,Ay) = B(x,y)}
= {A€ GL(Qp): NTGA = G}.

1 0 0 O
o =s 0 o0 g
where G = 0 0 —p 0 q(x) = x' Gx
0 0 0 sp



The acausal spacetime

The orthogonal group O(q) is defined to be

O(a) = {A € GL(Qp): B(Ax,Ay) =B(x,y)}
= {A€ GLy(Qp) : ANTGA = G}.

1 0 0 ©
|0 —s 0 © T
where G = 00 —p 0 q(x) = x' Gx
0 0 0 sp

For t € Q, put V; := Vi(q) = {k € Q} : q(k) = t}.
Then orthogonal group O(q) acts transitively on V.



The acausal spacetime

Set
V .= {k = (ko, )EprQp,q( ) =1}
1= q(k) = k3 — qo(k), where qo(k) = ski + pk3 — spk3
We now define in U; C Qg, two analytic functions as follows:

Uq — Qp

ko £ /15K 4 pk3 —spkd = £/ (K),



The acausal spacetime

To define positive and negative, we need a multiplicative character
that takes two values

Q; — {L_l}
x = 7w(x)

x>0ifr(x)=1 x <0if 7(x) = -1



The acausal spacetime

We define positive and negative mass shells V*:

vt = {(ko,k)e V;k0>0yk0:\/w(k)} :
v—:{(ko,k)e Viko <0y ko= — w(k)}.



The acausal spacetime
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The acausal spacetime

We define positive and negative mass shells V*:

vt = {(ko,k)e V;ko>0yko:«/w(k)} :
V*:{(ko,k)e Viko <Oy ko= — w(k)}.

v=vt||v | |w.

W = {(ko,k) € Z};q(0,k) = 1}



The restricted p—adic Poincaré group

Definicion
The restricted p-adic Lorentz group is

£ ={AeOo(g)A(VE) = vE}.

The restricted p—adic Poincaré group is P_Ti_ the set of pairs (a,\),
where a € Q;‘; and N\ € [,1, with the group operation

(aa /\1) (ba A2) = (a + Alba /\1/\2) 0



The restricted p—adic Poincaré group

Definicion
The restricted p-adic Lorentz group is

£l ={Ae0(q);A(VF) = vE}.

The restricted p—adic Poincaré group is 731 the set of pairs (a,\),
where a € Qf‘, and \ € Ei, with the group operation

(aa Al) (b7 AZ) = (a + Alba /\1/\2) o

The group 771 acts on Q} through (a,A)x = Ax + a.



Klein-Gordon type pseudodifferential equations
Definicion
Fora >0, me Q}, and q as before, let us put:
Ogam =F olqg—m[goF, (1)

Operators of this type are called (1), p-adic pseudodifferential
Klein-Gordon operators.

Definicion
We say that E;, € D¢ is a fundamental solution for

Ogeu = o, (2)

if u= Eqq * ¢ is a solution to (2) in Dy, for any ¢ € Dc.



Fundamental solutions

Theorem (1) M. L. Mendoza, J. A. Vallejo, W. A. Ziiiga

There exist fundamental solutions E . to [; o which are invariant
under the action O (q). Moreover, the distributions E , satisfy:

(i)
F(qua) = F(Ecﬁa) + C(S(q - 1)7 (3)
where C is a non-zero complex constant and ]-'(Eq(J,a),
d(q — 1) are distributions invariant under O(q).

(i)
1y F(Eqa) = Co(q —1). (4)
In particular, the restriction of F(Ey ) to V is unique up to
the multiplication by a non-zero complex constant.



Fundamental Solutions for p—adic pseudodifferential
Operators of Klein-Gordon Type

F [EQ,] is a linear combination of distributions of any of the types

/ la(x) — 1/3°6(x) d*x or pa/ o[ (©b(ti0) — ©5(0)) d.
Qv 7,



Fundamental Solutions for p—adic pseudodifferential
Operators of Klein-Gordon Type

Now consider the non-homogeneous p—adic Klein-Gordon
equation:

Og.au(t,x) = h(tx), (5)
where (t,x) € Qp x Q3 and h(t,x) € Dc(Qp x Q3).



Theorem (3) M. L. Mendoza, J. A. Vallejo, W. A. Ziiiga

(i) The equation
Ogau(t,x) =0 (6)

admits plane wave solutions: x, {—B((t,x),(E*, k))} is a
weak, solution of (6). Where (E*, k) € V* with
E* = 4+, /w (k).

(ii) The distributions

/xp{—B((t,x),( w(k)’k))}cﬁk+

4 ‘ w(k)‘p
[rofo(en. (-vem)}
Uq p

are the unique weak solutions of (6) invariant under El.



Theorem (3) M. L. Mendoza, J. A. Vallejo, W. A. Ziiiga
(iii) The distributions

u(t,x; A, B, C) = EQ (t,x)  h(t,x)+

c/ {xo (= Ve (00t + B0 (k. )) A(K) +

Uq
Xp <\/w(k)t+ B (k,x)) B(k)} X ‘Z\/%

where C is a non-zero complex number, and A (k),
B (k) € Dc(Q3), are weak solutions of (5).



Nuclear Hilbert spaces

The construction of a suitable analog of the Schwartz test
functions is of the utmost importance.

Definicion
[ W. A. Zifiga, 2017 . For f,g € Dk, with K =R, C, put:

(.80 = | [FERE©),

for | € N, with the overbar denoting complex conjugate. Also,

Moo(Qp, K) 1= Hoo(K) = [ Hi(K).
leN



Nuclear Hilbert spaces

The mapping
Oga: Hol(K) — Hoo(K)
h —  Ogah

is a well-defined continuous linear operator between locally convex
spaces.



Fock spaces

We define the symmetric Fock space over H = L2 (VT,d\) as
Fs(H) = @2 1™, where H{" = S, 1),

We denote by S, : H(" — SH("), the symmetrization operator,
and §$ = ®22,S,



Fock spaces

We define the symmetric Fock space over H = L2 (V,d)) as
Fs(H) = @2 1™, where H{" = S, 1.

We denote by S, : H) — SH(  the symmetrization operator,
and S = ®%2,S, Vf € Hoo (R). We define the operator ®

d:Ho(R) — OP(Fs(H))
f —  ®s(Rf)



Fock spaces

We define the symmetric Fock space over H = L2 (VT,d)) as
Ss(H) = @21071&”), where Hﬁ”) = S, Hm.

We denote by S, : H(" — SH(", the symmetrization operator,
and S = ®%°,S, Vf € Hoo (R). We define the operator ®

®:Ho (R) — OP(Fs(H))
f —  ®s(Rf)

Let H=Fs(L2(VT,dN\)), U=T(U(+-)) =®]_U(-,"), where

(U(a, N)9)(k) = xp(B(a, k) (A" k), ® and D = Fo.



A p—adic scalar QFT is a set {H, 4, ®, D} satisfying

p-adic Garding—Wightman axioms

1. Relativistic invariance of states: H is a separable Hilbert space

and
U(-,-) : PL — U(H).
is a strongly continuous unitary representation.

2. Spectral condition: There exists a measure Ey/+ on Qf,
corresponding to $l(a, /) supported on S(V+). (The
topological closure of the additive semigroup generated by the
vectors of V).

3. Existence of a vacuum. 3! To e H> U(a, /) To=To V
ae Qf;, this vector is called the vacuum.



p-adic Garding—Wightman axioms

4. Invariant domains for the fields: 3 D € H and a map from
Hoo (C) to the unbounded operators on H such that:

(i) Vf €M (C), itis D C Dom(®(f)), D C Dom (®(f)*), and
®(f)' D=0 (F) | D.

(i) Toe D, and ®(f)DC DV feHy(C).

(iii) For any fixed ¢ € D, the mapping f — ® (f) ) is linear in f.

5. Regularity of fields: V 11, 12 € D, the mapping

f = (1, @ (F)1h2)yy
lies in H%, (C).



p-adic Garding—Wightman axioms

6. Poincaré invariance of the field.: V (a,A) € 771,
(a,A)D C D, and V f € Ho (C), ¢p € D,

U(a,N) @ (F)th(a,N) = ((a,A) )¢,
7. Local causality. If f, g € D¢ (Zf,), then
[@(F), ® (g)]V = (P(F)P(g) — P (g) ®(f)) V=0,V VeD.

8. Ciclicity of vaccum: The set Dy of finite superpositions of
vectors ® (f1)--- ® (f,) To is dense in H.



p-adic Garding=Wightman axioms

Theorem (2) M. L. Mendoza, J. A. Vallejo, W. A. Ziiiga
(i) The set
{SS(L% (V+’ dA))’ r (U(7 )) ) ¢7 FO}

satisfy the p—adic Garding—Wightman axioms.
(ii) For any f € Hoo (C),

® (Oyf) = 0.
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