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Introduction

The dynamics of capillary flow have practical aspects in connection
with the movement of water or oil through soils, the impregnation of
wood and other porous materials with liquids.

Pic. 1. Tree-like capillary net-
works are common in variety of
geological structures: images ex-
tracted from oil-saturated rocks at
Mexican oil-fields.
(Photo is given by K. Oleshko)
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Capillary Effect

Capillary action (sometimes capillarity, capillary motion, capillary ef-
fect, or wicking) is the ability of a liquid to flow in narrow spaces
without the assistance of, or even in opposition to, external forces like
gravity.

The meniscus is the curve front
surface of a liquid close to the
surface of the container or an-
other object. The curvature of
the meniscus is caused by sur-
face tension of the liquid.

3 / 44



Dynamics in Single Capillary
Dynamical problems connected with the rise of liquids in capillary
tubes have been investigated by Edward W. Washburn in 1921.

Pic. 1. E.W. Washburn
The dynamics of capil-
lary flow, Phys. Rev.,
XVII, N3, p. 273
(1921)

Edward W. Washburn’1921
The rate of penetration into a small capillary of radius r is shown to be

d`
dt

=
P(r2 + 4ε)

8η`
,

P is the driving pressure, ε the coefficient of slip and η the viscosity.
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Washburn’s argument
Starting with the Poiseuille’s law which takes the following form, if to
neglect for the moment any air resistance:

dV =
π
∑

P
8η `

(r4 + 4ε r3)dt,

where dV is the volume of liquid which in time dt flows through any
cross-section of the capillary;
` is the length of the column of liquid in the capillary at the time t;
η is the viscosity of the liquid;
ε is its coefficient of slip;∑

P is the total effective pressure which is acting to force the liquid
along the capillary.

Taking into account:
dV = π r2d `
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Washburn received the following the velocity of the moving meniscus:

d`
dt

=

∑
P

8r2 · η · `
(r4 + 4ε r3),

where ∑
P = PA + Ph + Ps

PA – the unbalanced atmospheric pressure;
Ph – the hydrostatic pressure;
Ps – the capillary pressure.

Ph = h · g · D− `s · g · D sinψ;

Ps =
2γ
r

cos θ

`s – the linear distance from point A to M on Pic. 1.
g – the gravity acceleration constant;
D – the liquid density;
γ – the surface tension of the liquid;
θ – the contact angle between the meniscus and the wall of the tube.
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Washburn’s Law for the velocity of penetration

Actually Washburn has obtained the following law for the velocity of
penetration:

d`
dt

=

[
PA + g · D(h− `s sinψ) + 2γ

r cos θ
]
(r2 + 4ε r)

8η `
,

PA is the unbalanced atmospheric pressure;
γ – the surface tension of the liquid;
ε – coefficient of slip;
θ – the contact angle between the liquid meniscus and the wall of the
tube.

For horizontal capillary

`2 =
(γ cos θ

2 · η

)
r · t or ` =

√(γ cos θ

2 · η

)
r · t (1)
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Remark about vertical capillary

Moreover Washburn has shown that for the vertical capillaries with
small internal surface the logarithmic term, which arise in the solution
of the equation, may be expanded and after rejection of all the lower
order terms, the equation will coincide with one for horizontal
capillary. And the corresponding equation for the rate is

d`
dt

=
r · γ
4` · η

cos θ.
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Murray’s Law (1927)

[Cecil D. Murray’27] A Relationship Between Circumference and
Weight in Trees and Its Bearing on Branching Angles, J. Gen. Physiol.
10(5), p. 725 - 729 (1927).

Murray’s law predicts the thickness of branches in transport networks,
such that the cost for transport and maintenance of the transport medium
is minimized.

For n child branches splitting from a common parent branch, the law
states that:

r3 = r3
1 + r3

2 + r3
3 + ...+ r3

n.

Murray’s law is a basic physical principle for transfer networks.
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Treelike Capillary Networks

Duhua Shou, Lin Ye, Jintu Fan (2014)

Pic. 2 Duhua Shou,
Lin Ye, Jintu Fan,
Phys. Rev. E, 89,
053007 (2014)

The ratio of radius between the tubes at the (j + 1)-th branching level
and that at the j-th branching level, and corresponding the between the
lengths:

α =
rj+1

rj
; β =

`j+1

`j
.
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The capillary flow in V-shaped treelike network

The capillary flow in all tubes of the treelike network is driven by
capillary pressure. When the meniscus is in the j-th level tube, the
capillary pressure is given by:

pj = −2γ cos θ

rj
(2)

The j-th level flow rate Qj is obtained based on the Hagen-Poiseuille
law:

Qj = πr2
j uj = −

πr4
j

8η
∂p
∂x
, with uj =

d`
dt

(3)

where uj is the spontaneous velocity of the liquid at the j-th level.
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First level of the treelike network
The time of capillary flow is obtained in terms of the liquid penetration
distance ` based on Washburn’s Law (1):

t1(`) =
2η

γ cos θ

`2

r1
, ` ∈ [0, `1). (4)

Here ` denotes the penetration distance for first level tubes, η stands for
the viscosity of the liquid, γ denotes the liquid-vapor surface tension,
and θ is the contact angle between liquid meniscus and the wall of the
tube.

Time T1, required for the liquid to fill the single tube of the first level
with the lenght `1, is equal to:

T1 =
2η

γ cos θ

`2
1

r1
,

and it is the same for all the tubes of first level.
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Noting that due to the conservation of mass:

mjQj = Q1,

where mj = p is the number of tubes at the j-th level, it follows from
equation for flow rate (3) that, for example, at the second levels of the
treelike network:

p2 = −8ηQ1

`1∫
0

dx
πr4

1
− 8ηQ2

`∫
`1

dx
πr4

2
,

with m2Q2 = Q1 = pQ2. And from (2) it follows:

γ cos θ

r2
= 4pηQ2

`1∫
0

dx
πr4

1
+ 4ηQ2

`∫
`1

dx
πr4

2
.
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D. Shou, L. Ye, J. Fan’2014

Shou-Ye-Fan-time:

The time Tj required for the liquid to fill all the tubes until the j-th
level is equal to:

Tj =
C
2

j∑
k=1

`2
k

rk
+ C

j∑
n=2

n∑
k=2

(
pn+1−k r3

n`k−1

r4
k−1

`n

)
, T0 = 0. (5)
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p-adic interpretation of the capillary flow
in porous medium
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Structure of the p-adic tree

A path, possibly infinite, on a rooted p-tree will be identified with a
p-adic number x ∈ Zp given by its canonical representation

x = x0 + x1p + x2p2 + · · · , xn ∈ {0, 1, . . . , p− 1}.

For some a ∈ Zp, a = a0 = a1p + a2p2 + · · · the ball

Bn(a) = {x ∈ Zp : |x− a|p ≤ p−n}, n ≥ 0

consists of the points

x = a0 + a1 p + . . .+ an pn + xn+1 pn+1 + xn+2 pn+2 + . . .︸ ︷︷ ︸
something

, (6)
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Structure of the p-adic tree
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Liquid volume in p-adic ball

The volume Wm(t) of liquid penetrating into the set of capillaries, de-
scribed as a p-adic ball Bm(a), equals

Wm(t) = V1(t) + · · ·+ Vm(t) +
∞∑

k=0

pkVm+k(t). (7)

For each fixed t, this sum is in fact finite: if Tj−1 < t ≤ Tj, then
Vm+k(t) = 0 for k > j− m.

The total volume penetrating through the porous medium modeled by
Zp is

W0(t) =
∞∑

k=0

pkVk(t).

If Tj−1 < t ≤ Tj, then Vk(t) = 0 for k > j.
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Calculation of the capillary volume

Let Vj(t) be the volume of liquid within a j-th level single tube at the
time t. Note that it may happen that Vj(t) = 0 because the liquid has
not reached the j-th level.

The volume Vj(t) is expressed in the terms of length `j(t) passed by
meniscus in time t:

Vj(t) = π r2
j `(t)
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We use calculations on the capillary flow dynamics given of [D. Shou,
L. Ye, J. Fan’2014].
The time tj(`) corresponding to the liquid movement at the j-th level is
calculated as:

tj(`) =
2η

γ cos θ

`2

rj
+

4η
γ cos θ

[
r3

j

j∑
k=2

pj+1−k `k−1

r4
k−1

]
`, ` ∈ [Lj−1,Lj), (8)

where
Lj =

j∑
k=1

`k.

In (8) the parameter ` corresponds to the j-th level of the tubes in the
porous medium, thus ` is changing in the interval:

j−1∑
k=1

`k ≤ ` <

j∑
k=1

`k,

where `k is the length of the single tube on the k-th level.
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Equation (8) is a quadratic one with respect to `. Solving equation
(8) we have:

`(t) = −rj dj +

√
(rj dj)2 +

rj t
2C

, t ∈ [Tj−1,Tj),

where

C =
4η

γ cos θ
,

dj =
`0 α

3j

r0
pj

j∑
k=2

( β

α4p

)k−1
=
`0 α

3j

r0
pj
β
(

1−
(
β
α4p

)j
)

α4p− β
.

Therefore

Vj(t) = π r2
j `(t) = π r2

j

(√
(rj dj)2 +

rj t
2C
− rj dj

)
, t ∈ [Tj−1,Tj), (9)

where time Tj is Shou-Ye-Fan-time required for the liquid to fill all the
tubes until the j-th level and calculated in (5).
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Construction of Stochastic Process

The idea of constructing a stochastic process ξt describing the capil-
lary flow is as follows. The state space is Zp, that is, in physical terms,
the set of all paths along the rooted tree beginning at its root.

ξt means the path filled by the liquid at the time t. To obtain a Markov
process, we need a transition density describing the probability that
ξt = y, if it is known that ξs = x, s < t.

As the first step, we calculate the conditional probability
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Conditional probabilities

ρ̃(s, x; t, y) =
P
(
{ω : ξt = y} ∩ {ω : ξs = x}

)
P
(
{ω : ξs = x}

) .

The probability that the process ξ· at time s ∈ [Tj−1,Tj] attains a point x
is equal to

P
(
{ω : ξs = x}

)
=

n(x)∧j∑
i=0

Vi(s)

W0(s)
=

n(x)∧j∑
i=0

Vi(s)

j∑
i=0

piVi(s)
, (10)

where the number n(x) is finite or infinite, depending on the “length”
of the filled trajectory x.
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To calculate the probability of the set

{ω : ξs = x} ∩ {ω : ξt = y},

let us first remark that points x and y in Zp have the following canonical
representations:

x = x0 + x1p + ...+ xnpn + · · · =
n(x)∑

xipi;

y = y0 + y1p + ...+ ynpn + · · · =
n(y)∑

yipi.

(11)

There appear two different variants of mutual relations between s and t
and the time intervals [Tj−1,Tj), when the j-level tubes are filled.
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Variant A
The times t and s, s < t, are located on the same time interval [Tj−1,Tj):

Tj−1 ≤ s < t < Tj

for some j, then transition probability density ρ(s, x; t, y) 6= 0 only if in
the canonical p-adic representations for points x and y (11) their com-
ponents coincide till the level j:

x0 = y0;

.............

xj = yj.

In this case

ρ̃(s, x; t, y) =
P
(
{ω : ξt = y}

)
P
(
{ω : ξs = x}

) =
W0(s)
W0(t)

·

n(y)∑
i′=0

Vi′(t)

n(x)∑
i=0

Vi(s)

. (12)
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Variant A
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Variant B
If instant times s and t, s < t, belong to different time intervals, that is:

0 ≤ Tk−1 ≤ s < Tk ≤ Tj−1 ≤ t < Tj

for some k < j, then the transition probability density ρ(s, x, t, y) 6= 0,
only if in the canonical p-adic decomposition of points x and y their
components coincide till the level j− 1:

x0 = y0;

.............

xj−1 = yj−1.

In this case the expression for the transition probability density ρ(s, x; t, y)
is given by the same formula (12):

ρ̃(s, x; t, y) =
P
(
{ω : ξt = y}

)
P
(
{ω : ξs = x}

) =
W0(s)
W0(t)

·

n(y)∑
i′=0

Vi′(t)

n(x)∑
i=0

Vi(s)

. (12)
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Variant B
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If we introduce the following characteristic function:

χ j(x, y) =

{
1, x0 = y0, x1 = y1, . . . , xj = yj;
0, otherwise.

Then, in terms of χ j(x, y) we may write:

ρ̃(s, x; t, y) =



W0(s)
W0(t)

·

n(y)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

χ j(x, y), Tj−1 ≤ s ≤ t < Tj;

W0(s)
W0(t)

·

n(y)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

χ j−1(x, y), s < Tj−1 ≤ t < Tj.
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Renormalization

To construction stochastic process we need to have the Chapman - Kol-
mogorov equation, i.e. the equality

ρ(s, x; u, y) =

∫
Zp

ρ(s, x; t, z)ρ(t, z; u, y)µ(dz). (13)

s < t < u
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Variant A

I. First check this for Tj−1 ≤ s < t < u < Tj. Starting with the r.h.s. of
(13) we have:∫

Zp

ρ̃(s, x; t, z)ρ̃(t, z; u, y)µ(dz) =

=

∫
Zp

W0(s)
W0(t)

n(z)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

· W0(t)
W0(u)

n(y)∧j∑
`′=0

V`′(u)

n(z)∧j∑̀
=0

Vi(t)

χ j(x, z)χ j(z, y)µ(dz) =

=
1

p j(p− 1)
ρ̃(s, x; u, y).
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Variant B

II. For the case s < Tj−1 ≤ t ≤ u < Tj we have∫
Zp

ρ̃(s, x; t, z)ρ̃(t, z; u, y)µ(dz) =

=

∫
Zp

W0(s)
W0(t)

n(z)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

· W0(t)
W0(u)

n(y)∧j∑
`′=0

V`′(u)

n(z)∧j∑̀
=0

Vi(t)

χ j−1(x, z)χ j(z, y)µ(dz) =

=
1

p j−1(p− 1)
ρ̃ (s, x; u, y).
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Summing up

The above calculations gives:

I.
∫
Zp

ρ̃(s, x; t, z) ρ̃(t, z; u, y)µ(dz) =
1

p j( p− 1)
ρ̃(s, x; u, y) (14)

for Tj−1 ≤ s < t < u < Tj (Variant A) and

II.
∫
Zp

ρ̃ (s, x; t, z)ρ̃ (t, z; u, y)µ(dz) =
1

p j−1( p− 1)
ρ̃(s, x; u, y) (15)

for s < Tj−1 ≤ t ≤ u < Tj (Variant B)
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Renormalization Factor
To guarantee the Chapman - Kolmogorov equation (13) it is necessary
to introduce renormalization factor into the definition of the transition
probability density. Thus we need to define a constant λ so that

ρ = λρ̃

would satisfy the the Chapman - Kolmogorov equation. Thus, from
(14) we have the equation:

1
λA

=
1

p j(p− 1)

1
λA

therefore
λA = p j(p− 1),

correspondingly
λB = p j−1(p− 1).
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Renormalized definition of probability density
The final definition of the probability density for the process under con-
struction is as follows:

ρ (s, x; t, y) =



p j(p− 1)
W0(s)
W0(t)

·

n(y)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

χj(x, y), Variant A

p j−1(p− 1)
W0(s)
W0(t)

·

n(y)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

χ j−1(x, y), Variant B.

and
ρ(s, x; u, y) =

∫
Zp

ρ(s, x; t, z)ρ(t, z; u, y)µ(dz).
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Transition Probability

Lemma 1
The transition probability for the process ξt:

P(s, x, t,Bn(a)) =

∫
Bn(a)

ρ (s, x, t, z)µ(dz)

is equal:

P(s, x; t,Bn(a)) = p−n W0(s)
W0(t)

·

j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

.

for both Variants A and B.

Lemma 2

P(s, x; t,Zp) ≤ 1.
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Inhomogeneous Markov processes
Thus we may use the analytic definition of a Markov process, that is a
definition of a transition probability.

Suppose that (E, E) is a measurable space. A family of real-valued
non-negative functions P(s, x; t,Γ), s < t, x ∈ E,Γ ∈ E , such that
P(s, x; t, ·) is a measure on E and P(s, x; t,Γ) ≤ 1, is called a transition
probability, if the Kolmogorov-Chapman equality∫

E

P(s, x; t, dy)P(t, y; u,Γ) = P(s, x; u,Γ)

holds whenever s < t < u, x ∈ E, Γ ∈ E .

A transition probability P is called normal, if for any s > 0, x ∈ E,

lim
t↓s

P(s, x; t,E) = 1.
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Evolution Family
An object related to the transition probability is the evolution family,
a biparametric family U(s, t) of operators acting on the space B(E) of
bounded E-measurable functions on E:

(U(s, t)f )(x) =

∫
E

f (y)P(s, x; t, dy).

These operators are positivity-preserving and U(s, t)1 ≤ 1.

Theorem 3
The linear operators U(s, t) are positivity preserving and satisfy:

(i) U(s, t) 1 ≤ 1.
(ii) U(s, s) = Id.

(iii) U(s, t) = U(s, τ)U(τ, t).

The relation (ii) means that P is a normal transition probability.
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Generator of Evolution Family

Let us fix some T > 0 and denote by D the class of functions from
B(B) for which for any s ∈ (0,T) the next limit exists:

lim
h↓0

U(s− h, s)f (x)− f (x)

h
=: A(s) f (x) (16)

and
lim
h↓0

U(t − h, t)f (x) = f (x).
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Theorem 4
The generator A(s) defined of evolution family U(t, s) of the
inhomogeneous Markov process has the explicit representation:

(A(s)f )(x) = p j(p− 1)

∫
Zp,

y0 = x0
...

yj = xj

f (y)

(
log

j∑
k=0

pkVk(s)

n(x)∧j∑
i=0

Vi(s)

)′
s

µ(dy).
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Sketch of the proof

We start with the calculation of the difference in the l.h.s. of (16).

1
h

(
U(s− h, s)f (x)− f (x)

)
=

=
1
h

(∫
Zp

f (y) ρ(s− h, x, s, y)µ(dy)− f (x)
)

=

=
1
h

∫
Zp

f (y)
(
ρ(s− h, x, s, y)− ρ (s, x; s, y)

)
µ(dy).

Thus we need to calculate the difference:

∆ =
1
h

(
ρ(s− h, x; s, y)− ρ(s, x; s, y)

)
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Noting that

ρ(s, x; t, y) = p j(p− 1)
W0(s)
W0(t)

·

n(y)∧j∑
i′=0

Vi′(t)

n(x)∧j∑
i=0

Vi(s)

χ j(x, y),

if we introduce the notation:

V̂x, j(s) :=

n(x)∧j∑
i′=0

Vi′(s)
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then we have

∆ =
p j(p− 1)χ j(x, y)

h
V̂y, j(s)
W0(s)

(
W0(s− h)V̂x, j(s)−W0(s)V̂x, j(s− h)

V̂x, j(s− h) · V̂x, j(s)

)
.

Thus

lim
h↓0

∆ = p j(p− 1)χ j(x, y)
V̂y, j(s)
W0(s)

W ′0(s)V̂x, j(s)−W0(s)V̂ ′x, j(s)

V̂2
x, j(s)

=

= p j(p− 1)χ j(x, y)
V̂y, j(s)

W0(s) · V̂2
x, j(s)

∣∣∣∣V̂x, j(s) W0(s)
V̂ ′x, j(s) W ′0(s)

∣∣∣∣ .
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A(s)f (x) =

∫
Zp

f (y)p j(p− 1)χj(x, y)
V̂y,j(s)

W0(s) · V̂2
x,j(s)

∣∣∣∣V̂x,j(s) W0(s)
V̂ ′x,j(s) W ′0(s)

∣∣∣∣ µ(dy),

where

χ j(x, y) =

{
1, x0 = y0, x1 = y1, . . . , xj = yj;
0, otherwise.

And this gives exactly

A(s) f (x) = p j(p− 1)

∫
Zp,

y0 = x0
...

yj = xj

f (y)
(

log
W0(s)
V̂x,j(s)

)′
s
µ(dy). �
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