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Motivation : continuous time model for dividing cells infected by
parasites (Bansaye & Tran 2011)

We assume that parasites proliferate in the cells and that their
lifelengths are much less than the one of the cell.

We also assume that the quantity of parasites in a cell evolves as a
specific population dynamic model (which is random) and cells
divide (randomly) in continuous time with rate r.

When a cell divides, a random fraction θ of the parasites goes into
the 1st daughter cell and a fraction (1− θ) in the second one.

We
always assume θ ∈ (0, 1).
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Instead of parasite infection, we can also think in some biological
content which grows in the cell and is shared randomly when the
cells divide (proteins, nutrients, energy, etc)

The biological model is inspired by the experiments conducted in
Tamara’s Laboratory (Sorbonne University) where bacteria E-coli
have been infected with bacteriophage lysogens (a virus that infects
and replicates within bacteria).

During the experiment, it was notice that a very infected cell often
gives birth to a very infected and a lowly infected daughter cells.
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The structure of this model seems to be quite complex,
unfortunately. Since it needs a good understanding of random
population dynamics models which have a tree-like structure that
evolves in a random tree. But it is possible to determine some
interesting parameters.

An example of an important parameter for biology is the expected
number of infected cells.

Such parameter is important because, we say that, a cell population
will recover if the asymptotic proportion of contaminated cells
vanishes.



Cell infection RW, RT and BGW Scaling limits

The structure of this model seems to be quite complex,
unfortunately. Since it needs a good understanding of random
population dynamics models which have a tree-like structure that
evolves in a random tree. But it is possible to determine some
interesting parameters.

An example of an important parameter for biology is the expected
number of infected cells.

Such parameter is important because, we say that, a cell population
will recover if the asymptotic proportion of contaminated cells
vanishes.



Cell infection RW, RT and BGW Scaling limits

The structure of this model seems to be quite complex,
unfortunately. Since it needs a good understanding of random
population dynamics models which have a tree-like structure that
evolves in a random tree. But it is possible to determine some
interesting parameters.

An example of an important parameter for biology is the expected
number of infected cells.

Such parameter is important because, we say that, a cell population
will recover if the asymptotic proportion of contaminated cells
vanishes.



Cell infection RW, RT and BGW Scaling limits

Random walks, random trees and
Bienayme-Galton-Watson processes



Cell infection RW, RT and BGW Scaling limits

Imagine that a gambler have a fortune of 5 fair coins and he decide
to play a coin tossing game.

On each successive gamble either wins 1 (if the coin shows heads)
or loses 1 (if the coin shows tails) independently of the past.

Let Sn denote the total fortune after the n-th gamble. Then S0 = 5
and then S1 is either 6 or 4 (with equal probability) and so on.

If we denote by τ0 the time to ruin, in particular τ0 ≥ 5.
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(Sn, n ≥ 0) is known as the simple random walk and in particular,
it can be written as follows

Sn = S0 +

n∑
i=1

∆Si, n ≤ τ0

where each ∆Si represents the value 1 or −1 accordingly as the i-th
coin tossing shows heads or tails (increments).

Moreover, the result
of the i-th coin tossing doesn’t interfere with the result of the j-th
coin tossing, meaning that all increments are mutually independent.

For constructing our population dynamic model, we introduce

Yi = 1 + ∆Si, for i ≥ 1.

In other words, if we flip the i-th coin Yi takes the value 0 or 2
accordingly as the coin shows tails or heads.



Cell infection RW, RT and BGW Scaling limits

(Sn, n ≥ 0) is known as the simple random walk and in particular,
it can be written as follows

Sn = S0 +

n∑
i=1

∆Si, n ≤ τ0

where each ∆Si represents the value 1 or −1 accordingly as the i-th
coin tossing shows heads or tails (increments). Moreover, the result
of the i-th coin tossing doesn’t interfere with the result of the j-th
coin tossing, meaning that all increments are mutually independent.

For constructing our population dynamic model, we introduce

Yi = 1 + ∆Si, for i ≥ 1.

In other words, if we flip the i-th coin Yi takes the value 0 or 2
accordingly as the coin shows tails or heads.



Cell infection RW, RT and BGW Scaling limits

(Sn, n ≥ 0) is known as the simple random walk and in particular,
it can be written as follows

Sn = S0 +

n∑
i=1

∆Si, n ≤ τ0

where each ∆Si represents the value 1 or −1 accordingly as the i-th
coin tossing shows heads or tails (increments). Moreover, the result
of the i-th coin tossing doesn’t interfere with the result of the j-th
coin tossing, meaning that all increments are mutually independent.

For constructing our population dynamic model, we introduce

Yi = 1 + ∆Si, for i ≥ 1.

In other words, if we flip the i-th coin Yi takes the value 0 or 2
accordingly as the coin shows tails or heads.



Cell infection RW, RT and BGW Scaling limits

Informally, Yi will represent the offsprings of my population
dynamic model.

Let us explain this by drawing a random tree as
follows. For simplicity, we assume that we start with one individual
in the population (the root ∅).
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◦ if Y3 = 2, we draw two branches

◦ if Y2 = 2, we draw two branches

◦ we explore the branches from L to R,

◦ if Y1 = 2, we draw two branches
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The random population dynamic model that we are interested on is
embedded in the tree.
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◦ Z4 = ]{nodes at height 4} = 0
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A Bienaymé-Galton-Watson (BGW) process is a random model
that describes the evolution of a given population whose individuals
reproduce independently of each other and with the same
reproduction law.

We introduce {Yi,n : n ≥ 0, i ≥ 1} a sequence of independent
r.v.’s, that is to say for n ≥ 0 and i 6= j

P(Yj,n = k, Yi,n = `) = P(Yj,n = k)P(Yi,n = `),

Each Yi,n represents the number of offsprings of the i-th individual
of the n-th generation.
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In this context, we describe Zn+1, the total amount of individuals
at the n+ 1-generation by

Zn+1 =

Zn∑
i=1

Yi,n.

From the latter, we observe that if Zn = 0, then Zn+m = 0, for
any m > 0, and in consequence zero is an absorbing state.

The transition probabilities are given by

Pij := P
(
Zn+1 = j

∣∣∣Zn = i
)

=
P
(
Zn+1 = j, Zn = i

)
P
(
Zn = i

) ,
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Pij =
P
(∑i

k=1Xk,n = j, Zn = i
)

P
(
Zn = i

) = P
( i∑
k=1

Xk,n = j

)
.

This property is known as the Markov property or informally
speaking the future and the past are independent given that we
know the current state of the random process.

Branching property : the process Zn starting from Z0 = i+ j has
the same law as the stochastic sum of two independent copies Z̃n
and Ẑn starting from i and j, respectivelly.
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speaking the future and the past are independent given that we
know the current state of the random process.

Branching property : the process Zn starting from Z0 = i+ j has
the same law as the stochastic sum of two independent copies Z̃n
and Ẑn starting from i and j, respectivelly.
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The branching property allow us to compute the expected value of
the number of individuals at a given generation.

E[Zn|Z0 = 1] = µn

Three different regimes appears depending on the value of µ. We
say that the process is supercritical, critical or subcritical
accordingly as µ > 1, µ = 1 or µ < 1.

The probability that the population becomes extinct equals one if
µ ≤ 1 and if µ > 1, then it is positive but smaller than one.
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How can we study populations that reproduce very fast and have
lots of individuals such as parasites ?

Let us assume that we have a collection of independent trees
(forest) as in the picture below.
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Forest with k trees and n vertices.
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Associated with this forest we have the following random walk
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Under an adecuate scaling in time (N) and space (N−1/2), the
random walk S converges towards the Brownian motion
B = (Bt, t ≥ 0), (as N increases).

Brownian excursion
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BGW → Feller Diffusion

Xt = X0 +

∫ t

0

√
2σ2XsdBs, t ≥ 0,

with associated infinitesimal operator

Af(x) = σ2xf ′′(x).

In other words, Feller diffusion is a natural model for populations
which die and multiply fast, randomly, without interaction.

We also may add a linear drift and the model still makes sense, i.e.

Xt = X0 + g

∫ t

0
Xsds+

∫ t

0

√
2σ2XsdBs, t ≥ 0,

with associated infinitesimal operator

Af(x) = −gxf ′(x) + σ2xf ′′(x).
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Simlarlly to the discrete case, we have

E[Xt|X0 = x] = xegt,

and three different regimes appears depending on the value of the
parameter g which is known as Malthusian parameter.

The branching property allow us to compute the probability of
extinction at finite time

P(∃t > 0 : Xt = 0|X0 = x) = e−g/σ
2x,

when g > 0 and equals one otherwise.

The tree structure which is behind is the Continuum Random Tree
(g=0).
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Continuum random tree (I. Kortchemski)
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The cell divides at constant rate r and a random fraction θ ∈ (0, 1)
of parasites enters the first daughter cell, whereas the remainder
enters the second daughter cell.

Following the infection in a cell line, the parasites grow as a Feller
diffusion and undergo a catastrophe when the cell divides.

Then its dynamics must be

Zt = Z0 + g

∫ t

0
Zsds+

∫ t

0

√
2σZsdBs

+

∫ t

0
Zs−dKs

,

where K is a random process that determines the time of splitting
of cells and the proportion.
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Let Nt and N∗t be the number of cells and infected cells at time t,
respectively.

If there is one infected cell at time 0, the average number of
infected cells must be exponential, i.e. E[Nt] = ert and
E[N∗t ] = ertP(Zt > 0|Z0 = x)

Five different regimes appears now that depends not only on r but
also on the Malthusian parameter and the splitting rule (with C.
Smadi and V. Bansaye).
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a/ We assume that g < 2rE [log(1/Θ)]. Then there exist positive
constants c1, c2, c3 such that
(i) If g < 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c1egt, as t→∞.

(ii) If g = 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c2t−1/2egt, as t→∞.

(iii) If g > 2rE [Θ log(1/Θ)], then

E [N∗t ] ∼ c3t−3/2eαt, as t→∞.

where α = minλ∈[0,1]{gλ+ 2r(E[Θλ]− 1/2)} < g.

b/ We now assume g = 2rE [log(1/Θ)], then there exists c4 > 0
such that,

E [N∗t ] ∼ c4t−1/2ert, as t→∞.

c/ Finally, if g > 2rE [log(1/Θ)], then there exists 0 < c5 < 1
such that,

E [N∗t ] ∼ c5ert, as t→∞.
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Thank you !


	Cell infection
	RW, RT and BGW
	Scaling limits

