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Abstract

W. A. Zúñiga-Galindo Reaction-di¤usion Equations on Complex
Networks and Turing Patterns, via p-Adic Analysis. arXiv.org >
math > arXiv:1905.02128.

This work aims to show that p-adic analysis is the natural tool to
study, in a rigorous mathematical way, reaction-di¤usion systems on
networks and the corresponding Turing patterns.
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Introduction

In 1952 A. Turing proposed that under certain conditions chemicals can
react and di¤use in such way as to produce steady state heterogeneous
spatial patterns of chemical (or morphogen) concentration.

Pattern-forming, reaction-di¤usion systems in continuous media, are
typically described by a system of PDEs of the form8><>:

∂u(x ,t)
∂t = f (u, v) + ε∆u(x , t)

∂v (x ,t)
∂t = g (u, v) + εd∆v(x , t),

(1)

where x 2 Rn, t � 0, and u(x , t), v(x , t) are local densities of two
chemical species, the functions f and g specify the local dynamics of u
and v , and ε, εd are the corresponding di¤usion coe¢ cients.
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Introduction

Typically u corresponds to an activator, which autocatalytically
enhances its own production, and v an inhibitor that suppresses u.

The system is initially considered to be at a steady state (u0, v0)
where f (u0, v0) = g (u0, v0) = 0.

The Turing instability occurs when the parameter d exceeds a
threshold.

This event drives to a spontaneous development of a spatial pattern
formed by alternating activator-rich and activator-poor patches.
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The CIMA reaction

The CIMA reaction (chlorite-iodide-malonic acid) provided experimental
evidence of Turing instability. It was modeled by Lengyel and Epstein.8><>:

∂u(x ,t)
∂t � σu∆u (x , t) = A� u � 4uv

1+u2

∂v (x ,t)
∂t � σu∆v (x , t) = BCu � Cuv

1+u2 .

Here u (the activator) denotes the iodide (I� ) concentration and v (the
inhibitor) the chlorite (ClO�2 ) concentration.
We consider this system with A > 0, B > 0, C > 0. There is a single
homogeneous steady state

u0 =
A

4B + 1
, v0 = B(1+

A2

(4B + 1)2
).
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Labyrinth and spot patterns in the CIMA reaction
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Introduction

In the 70s, Othmer and Scriven pointed out that Turing instability
can occur in network-organized systems. Since then,
reaction-di¤usion models on networks has been studied intensively.

In the discrete case, the continuous media is replaced by a network
(an unoriented graph G, which plays the role of discrete media)
composed by #V (G) independent nodes (vertices) that interact via
di¤usive transport on #E (G) links (edges).
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Introduction

The analog of operator ∆ is the Laplacian of the graph G, which is
de�ned as

[LJI ]J ,I2V (G) = [AJI � γI δJI ]J ,I2V (G) ,

where [AJI ]J ,I2V (G) is the adjacency matrix of G and γI is the degree
of I .
AJI = 1 if J and I are connected, otherwise, AJI = 0.
γI is the number of conections of node I .
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Introduction

The network analogue of (1) is8>><>>:
∂uJ
∂t = f (uJ , vJ ) + ε ∑

I
LJIuI

∂vJ
∂t = g(uJ , vJ ) + εd ∑

I
LJI vI .

(2)

The central goal of this work is to show that p-adic analysis is the
natural tool to study, in a rigorous mathematical way, the system (2)
and the corresponding Turing patterns.
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Introduction

By embedding the graph G into Qp , the �eld of p-adic numbers, we
construct a family of continuous p-adic versions of system (2), which
can be studied rigorously by using the classical semigroup theory.

In this way, we are able to study the original system (2) and to obtain
a new p-adic continuous version of it, which corresponds to a
�mean-�eld approximation�of the original system (2) .
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Introduction

From now on p denotes a �xed prime number. A p-adic number is a
series of the form

x = x�kp
�k + x�k+1p

�k+1 + . . .+ x0 + x1p + . . . , with x�k 6= 0,
(3)

where the xj s are p-adic digits, i.e. numbers in the set
f0, 1, . . . , p � 1g. The set of all the possible series of form (3)
constitutes the �eld of p-adic numbers Qp . There are natural �eld
operations, sum and multiplication, on series of form (3).

There is also a natural norm in Qp de�ned as jx jp = pk , for a
nonzero p-adic number x of the form (3). The �eld of p-adic numbers
with the distance induced by j�jp is a complete ultrametric space.
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Introduction

The ultrametric property refers to the fact that

jx � y jp � max
n
jx � z jp , jz � y jp

o
for any x , y , z in Qp .

We denote by Zp the unit ball, which consists of the all the series
with expansions of the form (3) with �k � 0.
We identify each vertex of G with a p-adic number of the form

I = I0 + I1p + . . .+ IN�1pN�1, (4)

where the Ij s are p-adic digits.

We denote by G 0N the set of all p-adic integers of the form (4) which
correspond to the vertices of G. In this way, we construct an
embedding of G into Qp .
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Introduction

This embedding is not unique, the only condition on p and N is that
#V (G) � pN .

We denote by Ω
�
pN jx � I jp

�
the characteristic function of the ball

centered at I with radius p�N , which corresponds to the set
I + pNZp .

We attach to G the open compact subset KN de�ned as the disjoint
union of the balls I + pNZp for I 2 G 0N , and a �nite dimensional real
vector space XN generated by the functions

n
Ω
�
pN jx � I jp

�o
I2G 0N

.

This is the space of continuous functions on G.
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Introduction

There exists a kernel JN (x , y), which is a linear combination of functions

of type Ω
�
pN jx � I jp

�
Ω
�
pN jy � J jp

�
, I , J 2 G 0N , such that the

operator LN : XN ! XN de�ned as

LN ϕ (x) =
R
KN
(ϕ (y)� ϕ (x)) JN (x , y)dy , (5)

where dy denotes the normalized Haar measure of the locally compact
group (Qp ,+), is represented by the matrix [LJI ]J ,I2G 0N .
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Introduction

The space XN (endowed with the supremum norm) plays the role of a
mesh, which can be re�ned as much as we want.

Given M > N, we can subdivide each ball I + pNZp , with I 2 G 0N ,
into pM�N disjoint balls Ij + pMZp , in this way we construct new

functions of type ∑Ij cIjΩ
�
pM jx � Ij jp

�
, which form an R-vector

space, denoted as XM , of dimension pM�N
�
#G 0N ,

�
.

We endow XM with the supremum norm.

Then XN is continuously embedded, as a Banach space, into XM .

Operator LN has a natural extension LM to XM given by the
right-hand side of formula (5).
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Introduction

We set X∞ for the vector space of real-valued, continuous functions
on KN , endowed with the supremum norm.

XM is continuously embedded, as a Banach space, into X∞, and
[M�NXM is dense in X∞.

Operator LM has an extension L to X∞ given by the right-hand of
formula (5), which is a linear bounded and compact operator.

In this way on each X�, we have an operator L�, here the dot means
N, M with M > N or ∞, and a continuous version of system (2):
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Introduction

8>>>><>>>>:
∂
∂t

24 u(�) (t)
v (�) (t)

35 =
24 f (u(�) (t) , v (�) (t))
g(u(�) (t) , v (�) (t))

35+
24 εL�u(�) (t)

εdL�v (�) (t)

35 ,
t 2 [0, τ) , x 2 KN .

(6)
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Introduction

We study the Cauchy problem attached to (6), when the initial datum
belongs to a su¢ ciently small open set containing a steady state
(u0, v0) where f (u0, v0) = g (u0, v0) = 0, and assuming that
rf (x) 6= 0 and rg (x) 6= 0 for x su¢ ciently close to (u0, v0) 2 R2.

Under these hypotheses we establish that (simultaneously) all the
Cauchy problems attached to (6) have a unique solution, with the
same maximal interval of existence.

In the case X∞, we called system (6) the mean-�eld model (or
approximation) of the original system (2).

For M su¢ ciently large, the solution of the Cauchy problem attached
to the mean-�eld model is arbitrarily closed to the solution of system
(6) in XM .
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Introduction

The matrix A(M ) of the operator LM acting on XM (after renaming the
elements of the basis of XM ) is a diagonal-type matrix of the form

A(M ) =

26666664
AN ;M

. . .
AN ;M

. . .
AN ;M

37777775
pM�N�pM�N

,

where

AN ;M =
h
pN�MAJI � γI δJI

i
J ,I2G 0N

= pN�M
h
AJI � pM�NγI δJI

i
J ,I2G 0N

.

W. A. Zúñiga-Galindo (CINVESTAV) Mini-Workshop 2019 19 / 49



Introduction

The matrix A(M ) corresponds to a network constructed by using pM�N

replicas of the original network, each these replicas correspond to a
network having a di¤usion operator of type AN ;M and the corresponding
p-adic di¤usion equation is

∂f (N ) (x , t)
∂t

= ε0LN ,λf (N ) (x , t) (7)

where ε0 = pN�M ε, λ = pM�N , and LN ,λ : XN ! XN is de�ned as

LN ,λ ϕ (x) =
Z
KN

fϕ(y)� λϕ (x)g JN (x , y) dy .
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Introduction

The equations of type (7) form a parametric family indexed by (ε0,λ),
which is invariant under a scale change of type (ε0,λ)!

�
δε0,λδ�1

�
,

for δ 2 (0, 1).

In conclusion, the mean-�eld approximation is the �limit�of system
(6) in XM when M tends to in�nity. In turn, any solution of system
(6) in XM (M > N) is made of pM�N solutions of pM�N systems of
type (6) in XN , each of them is a scaled version (a scaled replica) of
the original system (2).
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Introduction

In order to understand the �physical contents�of the mean-�eld model, it
is completely necessary to study its di¤usion mechanism, which means to
study the following Cauchy problem:8<:

∂f (x ,t)
∂t = εLf (x , t) , x 2 KN , t > 0

f (x , 0) = f0(x) 2 X∞.

(8)

The semigroup attached to (8),
�
eεtL	

t�0, is a Feller semigroup, and
consequently, there is a Markov process attached to (8).
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Introduction

This implies that in the mean-�eld model, the chemical species u, v
interact via a random walk like in the classical case (1): the chemical
reactions involving species u, v occur as a consequence of a random
walk of the particles forming them, this random walk is produced by
changes in the concentrations, which can be deterministically model
by Fick�s law of di¤usion, the whole picture is coded into the classical
heat equation.

A similar result holds in XM for equation (8).
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Introduction

Another goal of this work is to study the formation of Turing patterns
in the reaction-di¤usion systems of type (6).

To achieve this goal, it is necessary to understand the spectra of
operators [LIJ ]I ,J2G 0N , LN , LM with M > N, L.

The spectrum of the graph Laplacian matrix [LJI ]J ,I2G 0N is
well-understood. Since the adjacency matrix [AJI ]J ,I2G 0N is symmetric,

the eigenvalues, µI , I 2 G 0N , of [LJI ]J ,I2G 0N are non-positive and
µI0 = maxI2G 0N fµI g = 0. If λI , I 2 G 0N , are the eigenvalues of
[AJI ]J ,I2G 0N , with multiplicities mult(λI ), then the eigenvalues of the
discrete graph Laplacian are

µI = λI � γI , with multiplicity mult(λI ), for I 2 G 0N .
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Introduction

The eigenvalues of operator LM , with M > N, are µI = λI � γI , with
multiplicity pM�Nmult(λI ), for I 2 G 0N .

Operator L has unique compact extension
L : L2(KN ,C)! L2(KN ,C), thus, any spectral value di¤erent from
zero belongs to the set�

λI � γI ; I 2 G 0N n fI0g
	F ��γI ; I 2 G 0N

	
� (�∞, 0) .

The space L2(KN ,C) has an orthonormal basis formed by
eigenfunctions of operator L.

The di¤erence set between the spectra of L and [LJI ]J ,I2G 0N is

σ (L)r σ
�
[LJI ]J ,I2G 0N

�
=
�
�γI ; I 2 G 0N n fI0g

	
.

For each of these spectral values there exist p � 1 eigenfunctions of
the form

p
N
2 exp

�n
p�N�1jx

o
p

�
Ω
�
pN jx � I jp

�
,

where f�gp denotes the p-adic fractional part
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Introduction

In X� the Turing instability criteria can be established using the classical
argument. In X∞, the Turing pattern has the form

∑
κ1<κ<κ2

∑
I

AI κe
λtΩ

�
pN jx � I jp

�
+ ∑

κ1<κ<κ2
∑
I ,j

AIjκe
λtp

N
2 cos

�n
p�N�1jx

o
p

�
Ω
�
pN jx � I jp

�
+ ∑

κ1<κ<κ2
∑
I ,j

BIjκe
λtp

N
2 sin

�n
p�N�1jx

o
p

�
Ω
�
pN jx � I jp

�
(9)

for t ! +∞, where κ runs through unstable modes.
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Introduction

In the case XM , with M � N, the Turing pattern does not contain
the terms involving sine and cosine functions. On the other hand, in
the results reported in the literature for the Turing patterns on
networks the pattern is described as ∑AI eλtϕI , where the ϕI is the
eigenfunction corresponding to µI .

In the last �fty years, Turing patterns produced by reaction-di¤usion
systems on networks have been studied intensively, mainly by
physicists, biologists and engineers.

Nowadays, there is a large amount of experimental results, about the
behavior of these systems, obtained mainly via computer simulations
using large random networks.
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Introduction

The investigations of the Turing patterns for large random networks
have revealed that, whereas the Turing criteria remains essentially the
same, as in the classical case, the properties of the emergent patterns
are very di¤erent.

Nakao and Mikhailov establish that Turing patterns with alternating
domains cannot exist in the network case, and only several domains
(clusters) occur.

Multistability, that is, coexistence of a number of di¤erent patterns
for the same parameters values, is typically found and hysteresis
phenomena are observed.

They used mean-�eld approximation to understand the Turing
patterns when d > dc , and proposed that the mean-�eld
approximation is the natural framework to understand the peculiar
behavior of the Turing patterns on networks.
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Introduction

All the above mentioned �ndings can be explained using the results
presented here, but the hysteresis phenomena.

By identifying the ball I + pNZp with a cluster, we have that Turing
pattern (9) is organized in a �nite number of disjoint clusters, each
of them supporting a stationary pattern, all these patterns are
controlled by the same kinetic parameters.

Notice that the occurrence of clusters in the Turing patterns is a
direct consequence of the hierarchical structure of Qp : every ball is a
�nite disjoint union of balls of smaller radii.

More generally, clustering (as the method of hierarchical classi�cation
of objects using trees) is deeply connected with the geometric of
ultrametric spaces.
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Introduction

Our results show that Turing criteria remains essentially the same as
in the classical case. It is relevant to mention here, that from a
mathematical perspective, it is necessary to show �rst, that the
Cauchy problem attached to the reaction-di¤usion system has a
solution with initial data near to the steady state (u0, v0). Then, one
shows that the solution has an asymptotic pro�le of Turing type.

The solutions of reaction-di¤usion systems may not exist for all times
or simply vanish.

We have not found in the current literature a rigorous study of the
Cauchy problem associated with reaction-di¤usion systems on
networks. However, the study of di¤erential equations on graphs is
nowadays a relevant mathematical matter.
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p-Adic analogues of Reaction-di¤usion systems on networks
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p-Adic analogues of Reaction-di¤usion systems on networks

We consider an arbitrary graph G with vertices I 2 G 0N , where G 0N is a
�nite set.

When there is no connection between the vertices, the dynamics on each
vertex is controlled by a local interactions described as8<:

∂uJ
∂t = f (uJ , vJ )

∂vJ
∂t = g(uJ , vJ ),

(10)

for J 2 G 0N , where a pair (uJ , vJ ) = (uJ (t) , vJ (t)) represents some
quantities in the vertex J, such as population densities of biological species
or concentrations of chemical substances.
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p-Adic analogues of Reaction-di¤usion systems on networks

When connection between vertices is taken into account, we assume
the existence of a �ux of quantities between these vertices.

If two vertices are not connected, there is no �ux between them.

The �ux is assumed to be given by Fick�s law of di¤usion, which
means that the �ux is proportional to the di¤erence of quantities on
the two vertices.
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p-Adic analogues of Reaction-di¤usion systems on networks

Therefore the dynamics of uJ and vJ on vertex J is described as8>>><>>>:
∂uJ
∂t = f (uJ , vJ ) + ε ∑

I2G 0N
AJI fuI � uJg

∂vJ
∂t = g(uJ , vJ ) + εd ∑

I2G 0N
AJI fvI � vJg ,

(11)

for J 2 G 0N , where

AJI :=

8<:
1 if the vertices J and I are connected

0 otherwise.

The matrix [AJI ]J ,I2G 0N is called the adjacency matrix of G.
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p-Adic analogues of Reaction-di¤usion systems on networks

The positive constants ε and εd denote the di¤usivities of u and v . The
number of edges connecting to vertex I is γI := ∑

J2G 0N
AIJ . We set

γG := maxI2G 0N γI .

For each J 2 G 0N , we can rewrite the �ux term as

∑
I2G 0N

AJI fuI � uJg = ∑
I2G 0N

LJIuI ,

where LJI = AJI � γI δJI , here δJI denotes the Kronecker delta. The
matrix [LJI ]J ,I2G 0N is called the Laplacian matrix of the graph G.

Then, system (11) can be rewritten as8>>><>>>:
∂uJ
∂t = f (uJ , vJ ) + ε ∑

I2G 0N
LJIuI

∂vJ
∂t = g(uJ , vJ ) + εd ∑

I2G 0N
LJI vI ,

for J 2 G 0N . (12)
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p-Adic analogues of Reaction-di¤usion systems on networks

We set
GN := Zp/pNZp for N � 1.

We identify GN with the set of representatives of the form

I = I0 + I1p + . . .+ IN�1pN�1, (13)

where the Ij s are p-adic digits. We assume that G 0N � GN .

This implies that the number of vertices #G 0N of G must satisfy
#G 0N � pN .

There is no a canonical way of choosing N and p. On the other hand,
since the elements of the form (13) belong to Zp r pNZp , the assumption
G 0N � GN gives rise an embedding of G into Zp r pNZp .

W. A. Zúñiga-Galindo (CINVESTAV) Mini-Workshop 2019 36 / 49



p-Adic analogues of Reaction-di¤usion systems on networks

We de�ne
KN =

F
I2G 0N

I + pNZp .

Notice that KN is an open compact subset of Zp .

We also de�ne

JN (x , y) = p
N ∑
J2G 0N

∑
K2G 0N

AJKΩ
�
pN jx � J jp

�
Ω
�
pN jy �K jp

�
, (14)

x , y 2 Qp , where [AJI ]J ,I2G 0N is the adjacency matrix of graph G. Notice
that JN (x , y) is a test function from D(KN �KN ,R).
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p-Adic analogues of Reaction-di¤usion systems on networks

We denote by C (KN ,R) the vector space of all the continuous real-valued
functions on KN endowed with supremum norm, denoted as k�k∞.

We denote by XN , the R-vector space consisting of all the test functions
supported in KN having the form

ϕ (x) = ∑
J2G 0N

ϕ (J)Ω
�
pN jx � J jp

�
,

where ϕ (J) 2 R. We endow XN with the k�k∞-norm. Notice thatn
Ω
�
pN jx � J jp

�o
J2G 0N

is a basis of XN .

Then XN is a closed subspace of C (KN ,R), in addition,

XN '
�

R#G 0N , k�k∞

�
, as Banach spaces,

where
�x1, . . . , x#G 0N

�
∞

:= max
n
jx1j , . . . ,

���x#G 0N ���o for�
x1, . . . , x#G 0N

�
2 R#G 0N .
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p-Adic analogues of Reaction-di¤usion systems on networks

LN ϕ (x) =
R
KN
fϕ (y)� ϕ (x)g JN (x , y)dy , for ϕ 2 XN .

LN : XN ! XN is a linear bounded operator.

LNΩ
�
pN jx � I jp

�
= ∑

J2G 0N
AJIΩ

�
pN jx � J jp

�
�
 

∑
K2G 0N

AIK

!
Ω
�
pN jx � I jp

�
= ∑

J2G 0N
AJIΩ

�
pN jx � J jp

�
� γIΩ

�
pN jx � I jp

�
= ∑

J2G 0N
fAJI � γI δJI gΩ

�
pN jx � J jp

�
.

Consequently, operator LN : XN ! XN is represented by the matrix

[AJI � γI δJI ]J ,I2G 0N
. (15)
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p-Adic analogues of Reaction-di¤usion systems on networks

The original system can be rewritten as8>>>>><>>>>>:

u(N ) (�, t) , v (N ) (�, t) 2 C 1(R+,XN );

∂u(N )(x ,t)
∂t = f (u(N ) (x , t) , v (N ) (x , t)) + εLNu(N ) (x , t)

∂v (N )(x ,t)
∂t = g(u(N ) (x , t) , v (N ) (x , t)) + εdLNv (N ) (x , t) .

(16)
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p-Adic analogues of Reaction-di¤usion systems on networks

Notice that for ϕ 2 C (KN ,R), the function
Lϕ (x) =

R
KN
fϕ (y)� ϕ (x)g JN (x , y) dy (17)

belongs to C (KN ,R), and that operator L is a linear continuous operator
satisfying

kLk � 2γG and LN = L jXN .

By using the fact that operator L as an extension of LN , result natural to
postulate that the system8>>>>><>>>>>:

u (�, t) , v (�, t) 2 C 1(R+,C (KN ,R));

∂u(x ,t)
∂t = f (u, v) + εLu (x , t)

∂v (x ,t)
∂t = g(u, v) + εdLv (x , t) ,

(18)

is a �p-adic analog�of system (16).
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p-Adic di¤usion and self-similarity

We study the following Cauchy problem:8>>>><>>>>:
h (x , t) 2 C 1((0,∞) ,C (KN ,R));

∂h(x ,t)
∂t = εLh (x , t) , x 2 KN , t > 0;

h (x , 0) = h0(x) 2 C (KN ,R),

(19)

where L : C (KN ,R)! C (KN ,R) is the operator de�ned above.

We show that equation (19) is a �p-adic heat equation,�which means that
the semigroup attached to it is a Feller semigroup, and consequently the
di¤erential equation in (19) is associated with a p-adic di¤usion process in
KN .
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Yosida-Hille-Ray theorem and Feller semigroups

A semigroup fQ(t)gt�0 on C (KN ,R) is said to be positive if Q(t) is a
positive operator for each t � 0, i.e. it maps non-negative functions to
non-negative functions.

An operator (A,Dom(A)) on C (KN ,R) is said to satisfy the positive
maximum principle if whenever h 2 Dom(A) � C (KN ,R), x0 2 Qp , and
supx2Qp

h(x) = h(x0) � 0 we have Ah(x0) � 0.

Theorem (Hille-Yosida-Ray Theorem)

Let (A,Dom(A)) be a linear operator on C (KN ,R). The closure A of A
on C (KN ,R) is single-valued and generates a strongly continuous,
positive, contraction semigroup fQtgt�0 on C (KN ,R) if and only if:
(i) Dom(A) is dense in C (KN ,R);
(ii) A satis�es the positive maximum principle;
(iii) Rank(ηI�A) is dense in C (KN ,R) for some η > 0.
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Yosida-Hille-Ray theorem and Feller semigroups

De�nition
A family of bounded linear operators Pt : C (KN ,R)! C (KN ,R) is
called a Feller semigroup if
(i) Ps+t = PsPt and P0 = I ;
(ii) limt!0 jjPth� hjj∞ = 0 for any h 2 C (KN ,R);
(iii) 0 � Pth � 1 if 0 � h � 1, with h 2 C (KN ,R) and for any t � 0.

Therefore, Theorem 1 characterizes the Feller semigroups, more precisely,
if (A,Dom(A)) satis�es Theorem 1, then A has a closed extension which
is the generator of a Feller semigroup.

W. A. Zúñiga-Galindo (CINVESTAV) Mini-Workshop 2019 44 / 49



Yosida-Hille-Ray theorem and Feller semigroups

Lemma

The operator εL generates a strongly continuous, positive, contraction
semigroup

�
etεL

	
t�0 on C (KN ,R).

Theorem

There exists a probability measure pt (x , �), t � 0, x 2 KN , on the Borel
σ-algebra of KN , such that Cauchy problem (19) has a unique solution of
the form

h(x , t) =
Z
KN

h0(y)pt (x , dy) .

In addition, pt (x , �) is the transition function of a Markov process X whose
paths are right continuous and have no discontinuities other than jumps.

W. A. Zúñiga-Galindo (CINVESTAV) Mini-Workshop 2019 45 / 49



Self-similarity

The above theorem can be easily extended to a larger class of operators.
For instance, take J(x , y) 2 L∞ (KN �KN ,R), J(x , y) � 0 and λ � 1,
and set

εLλ ϕ (x) = ε
Z
KN

fϕ(y)� λϕ (x)g J (x , y) dy . (20)

Then Lλ : C (KN ,R)! C (KN ,R) is a linear bounded operator, with
kεLλk � (1+ λ) ε kJk∞.

Notice that condition λ � 1 is essential to assure that operator εLλ

satis�es the positive maximum principle.
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Self-similarity

The above theorem also holds for the following Cauchy problem:8>>>><>>>>:
h (x , t) 2 C 1((0,∞) ,C (KN ,R));

∂h(x ,t)
∂t = εLλh (x , t) , x 2 KN , t > 0;

h (x , 0) = h0(x) 2 C (KN ,R).

(21)

Then, for a �xed J(x , y) 2 L∞ (KN �KN ,R), J(x , y) � 0, (21) is a
family of p-adic di¤usion equations parametrized by the set

P :=
�
(ε,λ) 2 R2

+; ε > 0, λ � 1
	
.
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Self-similarity

We identify family (21) with the set P . Now, for σ 2 (0, 1], we de�ne the
mapping:

Sσ : P ! P

(ε,λ) !
�
σε, σ�1λ

�
.

The set of all Sσ for σ 2 (0, 1] form naturally a monoid, under the
composition of functions, denoted as SP . Therefore, we have established
the following result:

Theorem

The family P is invariant under the action of the monoid SP .
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