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Abstract

W. A. Ziiiga-Galindo Reaction-diffusion Equations on Complex
Networks and Turing Patterns, via p-Adic Analysis. arXiv.org >
math > arXiv:1905.02128.

@ This work aims to show that p-adic analysis is the natural tool to
study, in a rigorous mathematical way, reaction-diffusion systems on
networks and the corresponding Turing patterns.
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Introduction

In 1952 A. Turing proposed that under certain conditions chemicals can
react and diffuse in such way as to produce steady state heterogeneous
spatial patterns of chemical (or morphogen) concentration.

Pattern-forming, reaction-diffusion systems in continuous media, are
typically described by a system of PDEs of the form

Bug);,t) _ f (u, v) + gAu(X, l’)
(1)
Bv(a?f) = g(u,v)+edAv(x,t),

where x € R", t > 0, and u(x, t), v(x, t) are local densities of two
chemical species, the functions f and g specify the local dynamics of u
and v, and ¢, ed are the corresponding diffusion coefficients.
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Introduction

o Typically u corresponds to an activator, which autocatalytically
enhances its own production, and v an inhibitor that suppresses wu.
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o Typically u corresponds to an activator, which autocatalytically
enhances its own production, and v an inhibitor that suppresses wu.

@ The system is initially considered to be at a steady state (ug, vo)
where f (up, vo) = g (uo, o) = 0.
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o Typically u corresponds to an activator, which autocatalytically
enhances its own production, and v an inhibitor that suppresses wu.

@ The system is initially considered to be at a steady state (ug, vo)
where f (up, vo) = g (uo, o) = 0.

@ The Turing instability occurs when the parameter d exceeds a
threshold.
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Introduction

o Typically u corresponds to an activator, which autocatalytically
enhances its own production, and v an inhibitor that suppresses wu.

@ The system is initially considered to be at a steady state (ug, vo)
where f (up, vo) = g (uo, o) = 0.

@ The Turing instability occurs when the parameter d exceeds a
threshold.

@ This event drives to a spontaneous development of a spatial pattern
formed by alternating activator-rich and activator-poor patches.
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The CIMA reaction

The CIMA reaction (chlorite-iodide-malonic acid) provided experimental
evidence of Turing instability. It was modeled by Lengyel and Epstein.

a”gxt’t) —0,Au(x, t)=A—u— 141’52
WOl guAv (x, t) = BCu — .

Here u (the activator) denotes the iodide (/= ) concentration and v (the
inhibitor) the chlorite (C/O, ) concentration.

We consider this system with A > 0, B > 0, C > 0. There is a single
homogeneous steady state

A A2
Cw=Bl+ "
Br1 =Bl (4B +1)°

up =

).
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Introduction

@ In the 70s, Othmer and Scriven pointed out that Turing instability
can occur in network-organized systems. Since then,
reaction-diffusion models on networks has been studied intensively.

@ In the discrete case, the continuous media is replaced by a network
(an unoriented graph G, which plays the role of discrete media)
composed by #V/(G) independent nodes (vertices) that interact via
diffusive transport on #E(G) links (edges).

W. A. Ziiiiga-Galindo (CINVESTAV) Mini-Workshop 2019



Introduction

@ The analog of operator A is the Laplacian of the graph G, which is
defined as
(Ll revig) = (A — Y100 1ev(g) -
where [AJ/]J,,eV(g) is the adjacency matrix of G and 7, is the degree
of /.
@ Ay = 1if Jand | are connected, otherwise, A;; = 0.
@ 7y, is the number of conections of node /.

ABCDEFGHI

o " [ T O | 1 O | I 1
\ Blro ool 1 o0d
Clyoo1 00100

o o o Bl o 1000110
' Elg 1 0000001

oo I'{IIIEIIJU[I{III'I'F
Gloo 110000

Hiooa1 00000

o Tlen oo laoeop
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Introduction

@ The network analogue of (1) is

8= f(uyvy) + SZI:LJIUI

W = g(uy,vy) "’Sd;LJIVI-

@ The central goal of this work is to show that p-adic analysis is the
natural tool to study, in a rigorous mathematical way, the system (2)
and the corresponding Turing patterns.
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Introduction

e By embedding the graph G into Q,, the field of p-adic numbers, we
construct a family of continuous p-adic versions of system (2), which
can be studied rigorously by using the classical semigroup theory.

@ In this way, we are able to study the original system (2) and to obtain
a new p-adic continuous version of it, which corresponds to a
‘mean-field approximation’ of the original system (2) .
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Introduction

@ From now on p denotes a fixed prime number. A p-adic number is a
series of the form

x=x_yp K —I—X,k+1p_k+l +...+x0+xp+ ..., with x_, #0,
(3)
where the x;s are p-adic digits, i.e. numbers in the set
{0,1,...,p—1}. The set of all the possible series of form (3)
constitutes the field of p-adic numbers Q,. There are natural field
operations, sum and multiplication, on series of form (3).
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Introduction

@ From now on p denotes a fixed prime number. A p-adic number is a
series of the form

x=x_yp K —I—X,k+1p_k+l +...+x0+xp+ ..., with x_, #0,
(3)
where the x;s are p-adic digits, i.e. numbers in the set
{0,1,...,p—1}. The set of all the possible series of form (3)
constitutes the field of p-adic numbers Q,. There are natural field
operations, sum and multiplication, on series of form (3).

o There is also a natural norm in Q,, defined as |x|, = pk, for a
nonzero p-adic number x of the form (3). The field of p-adic numbers
with the distance induced by |~|p is a complete ultrametric space.
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Introduction

@ The ultrametric property refers to the fact that
|x—y\p < max{\x—z|p,]2—y\p} for any x, y, z in Q,.
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@ The ultrametric property refers to the fact that
|x—y\p < max{\x—z|p,]2—y\p} for any x, y, z in Q,.

@ We denote by Z, the unit ball, which consists of the all the series
with expansions of the form (3) with —k > 0.
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Introduction

@ The ultrametric property refers to the fact that
Ix—yl, < max{\x—z|p , ]z—y\p} for any x, y, z in Q,.

@ We denote by Z, the unit ball, which consists of the all the series
with expansions of the form (3) with —k > 0.

e We identify each vertex of G with a p-adic number of the form
/:Io+/1p+...+/N_1pN_1, (4)

where the /;s are p-adic digits.
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Introduction

@ The ultrametric property refers to the fact that
Ix—yl, < max{\x—z|p : ]z—y\p} for any x, y, z in Q,.

@ We denote by Z, the unit ball, which consists of the all the series
with expansions of the form (3) with —k > 0.

e We identify each vertex of G with a p-adic number of the form

I =lo+hp+...+Iy_1p" 71, (4)

where the /;s are p-adic digits.

o We denote by G the set of all p-adic integers of the form (4) which
correspond to the vertices of G. In this way, we construct an
embedding of G into Q.
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Introduction

@ This embedding is not unique, the only condition on p and N is that

#V(G) < p".
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@ This embedding is not unique, the only condition on p and N is that

#V(G) < p".

@ We denote by () (pN |x — I|p) the characteristic function of the ball

centered at / with radius p~"

I+pNZ,.

, which corresponds to the set
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Introduction

@ This embedding is not unique, the only condition on p and N is that

#V(G) < p".

@ We denote by () (pN |x — I|p) the characteristic function of the ball

centered at / with radius p~"

I+pNZ,.

, which corresponds to the set

@ We attach to G the open compact subset Xy defined as the disjoint
union of the balls | + pNZp for I € GY, and a finite dimensional real

vector space Xy generated by the functions {Q (pN |x — I]p) }/ o
<Gy
This is the space of continuous functions on G.
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Introduction

There exists a kernel Jy(x, y), which is a linear combination of functions
of type Q) (pN |x — I\p> Q (pN \y—J\p), I, J € GJ), such that the
operator Ly : Xy — Xy defined as

Lyve (x) =Kf (@ (y) — @ (x)) In(x,y)dy, (5)

where dy denotes the normalized Haar measure of the locally compact
group (Qp, +), is represented by the matrix [LJ,]JVIEQ\)’.
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Introduction

@ The space Xy (endowed with the supremum norm) plays the role of a
mesh, which can be refined as much as we want.
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@ The space Xy (endowed with the supremum norm) plays the role of a
mesh, which can be refined as much as we want.

@ Given M > N, we can subdivide each ball l—i—pNZp, with | € G9,
into pM~N disjoint balls /; + pMZ,,, in this way we construct new

functions of type Z,j c;,Q (pM |x — Ij|p>, which form an R-vector

space, denoted as Xy, of dimension pM~N (#GJ, ).
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@ The space Xy (endowed with the supremum norm) plays the role of a
mesh, which can be refined as much as we want.

@ Given M > N, we can subdivide each ball l—i—pNZp, with | € G9,
into pM~N disjoint balls /; + pMZ,,, in this way we construct new

functions of type Z,j c;,Q (pM |x — Ij|p>, which form an R-vector

space, denoted as Xy, of dimension pM~N (#GJ, ).
@ We endow Xy, with the supremum norm.

@ Then Xy is continuously embedded, as a Banach space, into Xj,.
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Introduction

@ The space Xy (endowed with the supremum norm) plays the role of a
mesh, which can be refined as much as we want.

@ Given M > N, we can subdivide each ball l—i—pNZp, with | € G9,
into pM~N disjoint balls /; + pMZ,,, in this way we construct new

functions of type Z,j c;,Q (pM |x — Ij|p>, which form an R-vector

space, denoted as Xy, of dimension pM~N (#GJ, ).
@ We endow Xy, with the supremum norm.
@ Then Xy is continuously embedded, as a Banach space, into Xj,.

@ Operator Ly has a natural extension Ly, to Xy given by the
right-hand side of formula (5).
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@ We set X, for the vector space of real-valued, continuous functions
on ICp, endowed with the supremum norm.
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@ We set X, for the vector space of real-valued, continuous functions
on ICp, endowed with the supremum norm.

@ Xy, is continuously embedded, as a Banach space, into X, and
Um>nXum is dense in Xe.
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@ We set X, for the vector space of real-valued, continuous functions
on ICp, endowed with the supremum norm.

@ Xy, is continuously embedded, as a Banach space, into X, and
Um>nXum is dense in Xe.

@ Operator Ly, has an extension L to X given by the right-hand of
formula (5), which is a linear bounded and compact operator.
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Introduction

@ We set X, for the vector space of real-valued, continuous functions
on ICp, endowed with the supremum norm.

@ Xy, is continuously embedded, as a Banach space, into X, and
Um>nXum is dense in Xe.

@ Operator Ly, has an extension L to X given by the right-hand of
formula (5), which is a linear bounded and compact operator.

@ In this way on each X,, we have an operator L,, here the dot means
N, M with M > N or oo, and a continuous version of system (2):
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Introduction

@ We study the Cauchy problem attached to (6), when the initial datum
belongs to a sufficiently small open set containing a steady state
(uo, vo) where f (up, vo) = g (up, vo) = 0, and assuming that
Vf (x) # 0 and Vg (x) # 0 for x sufficiently close to (ug, vp) € R.
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@ We study the Cauchy problem attached to (6), when the initial datum
belongs to a sufficiently small open set containing a steady state
(uo, vo) where f (up, vo) = g (up, vo) = 0, and assuming that
Vf (x) # 0 and Vg (x) # 0 for x sufficiently close to (ug, vp) € R.

@ Under these hypotheses we establish that (simultaneously) all the
Cauchy problems attached to (6) have a unique solution, with the
same maximal interval of existence.
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@ We study the Cauchy problem attached to (6), when the initial datum
belongs to a sufficiently small open set containing a steady state
(uo, vo) where f (up, vo) = g (up, vo) = 0, and assuming that
Vf (x) # 0 and Vg (x) # 0 for x sufficiently close to (ug, vp) € R.

@ Under these hypotheses we establish that (simultaneously) all the
Cauchy problems attached to (6) have a unique solution, with the
same maximal interval of existence.

@ In the case X, we called system (6) the mean-field model (or
approximation) of the original system (2).
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@ We study the Cauchy problem attached to (6), when the initial datum
belongs to a sufficiently small open set containing a steady state
(uo, vo) where f (up, vo) = g (up, vo) = 0, and assuming that
Vf (x) # 0 and Vg (x) # 0 for x sufficiently close to (ug, vp) € R.

@ Under these hypotheses we establish that (simultaneously) all the
Cauchy problems attached to (6) have a unique solution, with the
same maximal interval of existence.

@ In the case X, we called system (6) the mean-field model (or
approximation) of the original system (2).

o For M sufficiently large, the solution of the Cauchy problem attached

to the mean-field model is arbitrarily closed to the solution of system
(6) in XM-
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Introduction

The matrix AM) of the operator Ly, acting on Xy (after renaming the
elements of the basis of Xy) is a diagonal-type matrix of the form

An.m

AN;M 4 pM—Nx pM—N

N—M M—N
= Ay — ) :
p [ J =P Y1041 11EGY
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Introduction

The matrix AM) corresponds to a network constructed by using pM—N
replicas of the original network, each these replicas correspond to a
network having a diffusion operator of type Ap.p and the corresponding
p-adic diffusion equation is

of (V) (x, t
S = e ® (1) (7)
where ¢/ = pN=Me A = pM=N and Ly : Xy — Xy is defined as

Lua@ (x) = [ {p() = Ag (x)} Ju (x.y) dy.
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Introduction

@ The equations of type (7) form a parametric family indexed by (¢, A),
which is invariant under a scale change of type (¢/,A) — (58’,A§_1),
for 6 € (0,1).
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Introduction

@ The equations of type (7) form a parametric family indexed by (¢, A),
which is invariant under a scale change of type (¢/,A) — (58’,A5_1),
for 6 € (0,1).

@ In conclusion, the mean-field approximation is the ‘limit" of system
(6) in Xj when M tends to infinity. In turn, any solution of system
(6) in Xp (M > N) is made of p" =N solutions of pM =" systems of
type (6) in Xy, each of them is a scaled version (a scaled replica) of
the original system (2).
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Introduction

In order to understand the ‘physical contents’ of the mean-field model, it
is completely necessary to study its diffusion mechanism, which means to
study the following Cauchy problem:

afg;’t) =eLf (x,t), x€ Ky, t>0

(8)
f(x,0) = fy(x) € Xeo.

The semigroup attached to (8), {e”"}t>0, is a Feller semigroup, and
consequently, there is a Markov process attached to (8).
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Introduction

@ This implies that in the mean-field model, the chemical species u, v
interact via a random walk like in the classical case (1): the chemical
reactions involving species u, v occur as a consequence of a random
walk of the particles forming them, this random walk is produced by
changes in the concentrations, which can be deterministically model
by Fick's law of diffusion, the whole picture is coded into the classical
heat equation.
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Introduction

@ This implies that in the mean-field model, the chemical species u, v
interact via a random walk like in the classical case (1): the chemical
reactions involving species u, v occur as a consequence of a random
walk of the particles forming them, this random walk is produced by
changes in the concentrations, which can be deterministically model
by Fick's law of diffusion, the whole picture is coded into the classical
heat equation.

@ A similar result holds in Xy, for equation (8).
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Introduction

@ Another goal of this work is to study the formation of Turing patterns
in the reaction-diffusion systems of type (6).
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@ Another goal of this work is to study the formation of Turing patterns
in the reaction-diffusion systems of type (6).

@ To achieve this goal, it is necessary to understand the spectra of
operators [LU],’JGGR/, Ly, Ly with M > N, L.
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Introduction

@ Another goal of this work is to study the formation of Turing patterns
in the reaction-diffusion systems of type (6).

@ To achieve this goal, it is necessary to understand the spectra of
operators [LU],’JGGR/, Ly, Ly with M > N, L.

@ The spectrum of the graph Laplacian matrix [LJ,]J’IEQ\)’ is
well-understood. Since the adjacency matrix [AJ/]JJGG/(\)I is symmetric,
the eigenvalues, y,, | € GY, of [LJ,]J’,GGRI are non-positive and
i, = maxego {p,} = 0. If Ay, | € G}, are the eigenvalues of
[Aulyjecy, with multiplicities mult(A;), then the eigenvalues of the
discrete graph Laplacian are

u, = A — 7y, with multiplicity mult(A,), for | € G.
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@ The eigenvalues of operator Ly, with M > N, are y, = A; — 7y;, with
multiplicity pM~Nmult(A)), for I € G

W. A. Zifiga-Galindo (CINVESTAV) Mini-Workshop 2019



Introduction

@ The eigenvalues of operator Ly, with M > N, are y, = A; — 7y;, with
multiplicity pM~Nmult(A)), for I € G

@ Operator L has unique compact extension
L: L?(Ky,C) — L2(Kp, C), thus, any spectral value different from
zero belongs to the set

M=l e G\ {b}}U{-71il € Gy} C (~.0).
The space L2(Kp, C) has an orthonormal basis formed by
eigenfunctions of operator L.
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@ The eigenvalues of operator Ly, with M > N, are y, = A; — 7y;, with
multiplicity pM~Nmult(A)), for I € G

@ Operator L has unique compact extension
L: L?(Ky,C) — L2(Kp, C), thus, any spectral value different from
zero belongs to the set

M=l e G\ {b}}U{-71il € Gy} C (~.0).
The space L2(Kp, C) has an orthonormal basis formed by
eigenfunctions of operator L.

@ The difference set between the spectra of L and [LJ,]JEGR, is

(L)~ ([Lalyreey) = {=71i1 € GR\ {h}}

For each of these spectral values there exist p — 1 eigenfunctions of

the form
p% exp {p*Nfljx} Q (pN |x — I]p) ,
p

W. A. Ziiiiga-Galindo (CINVESTAV) Mini-Workshop 2019



Introduction

In X, the Turing instability criteria can be established using the classical
argument. In X, the Turing pattern has the form

Z ZA, MO (pN |x — l|p>

K1 <k<Kp
+ Z EA,JKe p2 cos ({p_N_ljx} > Q <pN |x — I]p>
K1 <K<Kp P
T Teestan (i Ja(then) o
K1<k<wp [j p

for t — +00, where x runs through unstable modes.
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Introduction

@ In the case Xp, with M > N, the Turing pattern does not contain
the terms involving sine and cosine functions. On the other hand, in
the results reported in the literature for the Turing patterns on
networks the pattern is described as Y Aje*t@,, where the ¢, is the
eigenfunction corresponding to ;.
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@ In the case Xp, with M > N, the Turing pattern does not contain
the terms involving sine and cosine functions. On the other hand, in
the results reported in the literature for the Turing patterns on
networks the pattern is described as Y Aje*t@,, where the ¢, is the
eigenfunction corresponding to ;.

@ In the last fifty years, Turing patterns produced by reaction-diffusion
systems on networks have been studied intensively, mainly by
physicists, biologists and engineers.
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@ In the case Xp, with M > N, the Turing pattern does not contain
the terms involving sine and cosine functions. On the other hand, in
the results reported in the literature for the Turing patterns on
networks the pattern is described as Y Aje*t@,, where the ¢, is the
eigenfunction corresponding to ;.

@ In the last fifty years, Turing patterns produced by reaction-diffusion
systems on networks have been studied intensively, mainly by
physicists, biologists and engineers.

@ Nowadays, there is a large amount of experimental results, about the
behavior of these systems, obtained mainly via computer simulations
using large random networks.
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Introduction

@ The investigations of the Turing patterns for large random networks
have revealed that, whereas the Turing criteria remains essentially the
same, as in the classical case, the properties of the emergent patterns
are very different.
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@ The investigations of the Turing patterns for large random networks
have revealed that, whereas the Turing criteria remains essentially the

same, as in the classical case, the properties of the emergent patterns
are very different.

@ Nakao and Mikhailov establish that Turing patterns with alternating
domains cannot exist in the network case, and only several domains
(clusters) occur.
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@ The investigations of the Turing patterns for large random networks
have revealed that, whereas the Turing criteria remains essentially the
same, as in the classical case, the properties of the emergent patterns
are very different.

@ Nakao and Mikhailov establish that Turing patterns with alternating
domains cannot exist in the network case, and only several domains
(clusters) occur.

o Multistability, that is, coexistence of a number of different patterns
for the same parameters values, is typically found and hysteresis
phenomena are observed.
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The investigations of the Turing patterns for large random networks
have revealed that, whereas the Turing criteria remains essentially the
same, as in the classical case, the properties of the emergent patterns
are very different.

Nakao and Mikhailov establish that Turing patterns with alternating
domains cannot exist in the network case, and only several domains
(clusters) occur.

Multistability, that is, coexistence of a number of different patterns
for the same parameters values, is typically found and hysteresis
phenomena are observed.

They used mean-field approximation to understand the Turing
patterns when d > d., and proposed that the mean-field
approximation is the natural framework to understand the peculiar
behavior of the Turing patterns on networks.
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presented here, but the hysteresis phenomena.
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@ All the above mentioned findings can be explained using the results
presented here, but the hysteresis phenomena.

e By identifying the ball | 4 p’VZ,J with a cluster, we have that Turing
pattern (9) is organized in a finite number of disjoint clusters, each
of them supporting a stationary pattern, all these patterns are
controlled by the same kinetic parameters.
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presented here, but the hysteresis phenomena.

e By identifying the ball | 4 p’VZ,J with a cluster, we have that Turing
pattern (9) is organized in a finite number of disjoint clusters, each
of them supporting a stationary pattern, all these patterns are
controlled by the same kinetic parameters.

@ Notice that the occurrence of clusters in the Turing patterns is a
direct consequence of the hierarchical structure of Q,: every ball is a
finite disjoint union of balls of smaller radii.
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Introduction

@ All the above mentioned findings can be explained using the results
presented here, but the hysteresis phenomena.

e By identifying the ball | 4 pNZp with a cluster, we have that Turing
pattern (9) is organized in a finite number of disjoint clusters, each
of them supporting a stationary pattern, all these patterns are
controlled by the same kinetic parameters.

@ Notice that the occurrence of clusters in the Turing patterns is a
direct consequence of the hierarchical structure of Q,: every ball is a
finite disjoint union of balls of smaller radii.

@ More generally, clustering (as the method of hierarchical classification
of objects using trees) is deeply connected with the geometric of
ultrametric spaces.
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Introduction

@ Our results show that Turing criteria remains essentially the same as
in the classical case. It is relevant to mention here, that from a
mathematical perspective, it is necessary to show first, that the
Cauchy problem attached to the reaction-diffusion system has a
solution with initial data near to the steady state (up, vo). Then, one
shows that the solution has an asymptotic profile of Turing type.
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Cauchy problem attached to the reaction-diffusion system has a
solution with initial data near to the steady state (up, vo). Then, one
shows that the solution has an asymptotic profile of Turing type.

@ The solutions of reaction-diffusion systems may not exist for all times
or simply vanish.
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Introduction

@ Our results show that Turing criteria remains essentially the same as
in the classical case. It is relevant to mention here, that from a
mathematical perspective, it is necessary to show first, that the
Cauchy problem attached to the reaction-diffusion system has a
solution with initial data near to the steady state (up, vo). Then, one
shows that the solution has an asymptotic profile of Turing type.

@ The solutions of reaction-diffusion systems may not exist for all times
or simply vanish.

@ We have not found in the current literature a rigorous study of the
Cauchy problem associated with reaction-diffusion systems on
networks. However, the study of differential equations on graphs is
nowadays a relevant mathematical matter.
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p-Adic analogues of Reaction-diffusion systems on networks

We consider an arbitrary graph G with vertices | € G, where G is a
finite set.

When there is no connection between the vertices, the dynamics on each
vertex is controlled by a local interactions described as

(10)

for J € G, where a pair (uy, v;) = (uy (t), v, (t)) represents some
quantities in the vertex J, such as population densities of biological species
or concentrations of chemical substances.
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p-Adic analogues of Reaction-diffusion systems on networks

@ When connection between vertices is taken into account, we assume
the existence of a flux of quantities between these vertices.
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p-Adic analogues of Reaction-diffusion systems on networks

@ When connection between vertices is taken into account, we assume
the existence of a flux of quantities between these vertices.

@ If two vertices are not connected, there is no flux between them.
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p-Adic analogues of Reaction-diffusion systems on networks

@ When connection between vertices is taken into account, we assume
the existence of a flux of quantities between these vertices.

@ If two vertices are not connected, there is no flux between them.

@ The flux is assumed to be given by Fick's law of diffusion, which
means that the flux is proportional to the difference of quantities on
the two vertices.
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p-Adic analogues of Reaction-diffusion systems on networks

Therefore the dynamics of u; and v, on vertex J is described as

Bautj = f<UJ, VJ) + ¢ Z Ay {U/ — UJ}
1eG

W= g(uy,vy)+ed ¥ Ay{vi—vs},
1€GY,

for J € G,(\),, where
1 if the vertices J and [ are connected

Ay =
0 otherwise.

The matrix [AJ[]J’IGGI(\)I is called the adjacency matrix of G.
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p-Adic analogues of Reaction-diffusion systems on networks

The positive constants € and ed denote the diffusivities of v and v. The

number of edges connecting to vertex [ is v, :== ), Aj;. We set
JeG)
Vg = MaAXjecy Vi

For each J € G?, we can rewrite the flux term as
Y Apf{u—uy =Y Lyu,
1eGj, 1eG

where Ly = Ay — 7,61, here 6 denotes the Kronecker delta. The
matrix [LJ/]JYIGGI(\]I is called the Laplacian matrix of the graph G.

Then, system (11) can be rewritten as
auJ = f(UJ, VJ) +e Y Lyu
1€G},
for J € Gy. (12)

W = g(uy,vy)+ed ¥ Lywv,
IeG)
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p-Adic analogues of Reaction-diffusion systems on networks

We set
Gy := Zp/pNZp for N > 1.

We identify Gy with the set of representatives of the form
I=ly+hp+...4+ Iy_1p" 71, (13)
where the /;s are p-adic digits. We assume that G,(\), C Gy.

This implies that the number of vertices #G,(\), of G must satisfy
#Gy < pV.

There is no a canonical way of choosing N and p. On the other hand,
since the elements of the form (13) belong to Z, pNZp, the assumption
GY C Gy gives rise an embedding of G into Z, \ p"'Z,,.
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p-Adic analogues of Reaction-diffusion systems on networks

We define
Kn= U I+p"Z,.

1€G},

Notice that Xy is an open compact subset of Z,.

We also define

neey)=p" £ T AQ(p"x=dl,) (v = Kl,). (14)
JeGY KeG|,

x, y € Qp, where [AJ/]J’IGG,(\)I is the adjacency matrix of graph G. Notice
that Jy(x, y) is a test function from D(Ky x Kp,R).
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p-Adic analogues of Reaction-diffusion systems on networks

We denote by C (Ky,R) the vector space of all the continuous real-valued
functions on Ky endowed with supremum norm, denoted as ||-||...

We denote by Xy, the IR-vector space consisting of all the test functions
supported in Ky having the form

p()= L 9 (p"Ix—Jl,),

JeGy
where ¢ (J) € R. We endow Xy with the ||-||-norm. Notice that
{Q <pN |x — J|p) }JeG,?, is a basis of Xy.
Then Xy is a closed subspace of C (Ky,R), in addition,

Xy =~ (]R#G'(\)/, ||||OO) , as Banach spaces,

} for

’ = max{|x1| ..... ‘X#Go
00 N
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p-Adic analogues of Reaction-diffusion systems on networks

Lvg (x) = [ {o(y) — ¢ (x)} In(x,y)dy, for ¢ € X.

Ly : Xy — Xy is a linear bounded operator.
LyQ (pN |x — I|p)

-5 AJ,Q(p’V\x—J\p>—( > AIK)Q<pN|X_l’p)

JeG) KeGy

= JEZGRIAJIQ (pN ’X_J|p) - 7,0 <pN ‘x—/|p>

= ¥ {An—764}Q2 (PN |x — J\p) :
JeGy

Consequently, operator Ly : Xy — Xy is represented by the matrix

[As =710y e69 - (15)
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p-Adic analogues of Reaction-diffusion systems on networks

The original system can be rewritten as

uM (1), vV (1) € CHIRy, Xy);

auuv;t(x,t) = f(u™ (x,t), v¥) (x, 1)) + eLyu™ (x, 1)
% = g(u™ (x, ), vV (x, 1)) +edLyvV) (x, t).
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p-Adic analogues of Reaction-diffusion systems on networks

Notice that for ¢ € C(Kp,R), the function
Lo (x) ZKf {e(y) =9 (x)}In (x,y)dy (17)

belongs to C(KCn,R), and that operator L is a linear continuous operator
satisfying
|||.|| S 2’)/9 and LN =L |XN .

By using the fact that operator L as an extension of Ly, result natural to
postulate that the system

u(-t),v(t) € CH(Ry, C(Ky,R));

aug;'t) =f(uv)+eLu(x,t) (18)

Wet) — g(u,v) +edLv (x, 1),

is a 'p-adic analog’ of system (16).
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p-Adic diffusion and self-similarity

We study the following Cauchy problem:
h(x,t) € C}((0,00),C(Kn,R));

ah(axt't) =eLh(x,t), xe€ Ky, t > 0; (19)

h(X,O) = ho(X) € C(]CN,]R),
where L : C(Ky,R) — C(Kp,R) is the operator defined above.

We show that equation (19) is a ‘p-adic heat equation,” which means that
the semigroup attached to it is a Feller semigroup, and consequently the
differential equation in (19) is associated with a p-adic diffusion process in

Ky.

W. A. Ziiiiga-Galindo (CINVESTAV) Mini-Workshop 2019



Yosida-Hille-Ray theorem and Feller semigroups

A semigroup {Q(t)}+>0 on C (KCn, R) is said to be positive if Q(t) is a
positive operator for each t > 0, i.e. it maps non-negative functions to
non-negative functions.

An operator (A, Dom(A)) on C (Ky,R) is said to satisfy the positive

maximum principle if whenever h € Dom(A) C C (Ky,R), xo € Q,, and
Supxeq, h(x) = h(xo) > 0 we have Ah(xp) < 0.

Theorem (Hille-Yosida-Ray Theorem)

Let (A, Dom(A)) be a linear operator on C (K, R). The closure A of A
on C (Kn,R) is single-valued and generates a strongly continuous,
positive, contraction semigroup {Q:}t>0 on C (Ky,R) if and only if:

(i) Dom(A) is dense in C (Ky,R);

(ii) A satisfies the positive maximum principle;

(iii) Rank(nyl — A) is dense in C (Ky,R) for some 1 > 0.
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Yosida-Hille-Ray theorem and Feller semigroups

Definition

A family of bounded linear operators P, : C (Ky,R) — C (Ky,R) is
called a Feller semigroup if

(i) Ps4t = PsPy and Pg = [;

(i) lim¢—q ||Peh — hl|ec = 0 for any h € C (Kn, R);

(i) 0 <P:h<1if0< h<1, with he C(Ky,R) and for any t > 0.

v

Therefore, Theorem 1 characterizes the Feller semigroups, more precisely,
if (A, Dom(A)) satisfies Theorem 1, then A has a closed extension which
is the generator of a Feller semigroup.
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Yosida-Hille-Ray theorem and Feller semigroups

The operator eL generates a strongly continuous, positive, contraction
semigroup {e'"} _ on C(Ky,R).

There exists a probability measure p; (x,-), t > 0, x € Ky, on the Borel
o-algebra of Ky, such that Cauchy problem (19) has a unique solution of
the form

In addition, p: (x, ) is the transition function of a Markov process X whose
paths are right continuous and have no discontinuities other than jumps.

v

W. A. Zifiga-Galindo (CINVESTAV) Mini-Workshop 2019



Self-similarity

The above theorem can be easily extended to a larger class of operators.
For instance, take J(x,y) € L% (Ky x Ky, R), J(x,y) > 0and A > 1,
and set

eLap (x) = [ {p(y) = A (x)} J (x.y) dy. (20)
Kn
Then Ly : C (Kn,R) — C (Kpn,R) is a linear bounded operator, with
leLall < (X +A) e[|

Notice that condition A > 1 is essential to assure that operator €L,
satisfies the positive maximum principle.
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Self-similarity

The above theorem also holds for the following Cauchy problem:
h(x,t) € C*((0,00), C(Kpn,R));

ahg;’t) =eLrh(x,t), x € Ky, t > 0; (21)

h(X, 0) = hQ(X) € C(KN,]R).

Then, for a fixed J(x,y) € L® (Kny x Ky, R), J(x,y) >0, (21) is a
family of p-adic diffusion equations parametrized by the set

P:={(eA) €ER%; e>0,A>1}.
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Self-similarity

We identify family (21) with the set P. Now, for o € (0, 1], we define the
mapping:
Se: P — P

(e,A) — (oe,071A).

The set of all S, for o € (0, 1] form naturally a monoid, under the

composition of functions, denoted as Sp. Therefore, we have established
the following result:

The family ‘P is invariant under the action of the monoid Sp.
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