Heat equation on a p-adic ball

Anatoly N. Kochubei

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska 3, Kiev, 01024 Ukraine, E-mail: kochubei@imath.kiev.ua

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Harmonic analysis on \mathbb{Q}_p : complex-valued functions

Denote by dx the Haar measure on the additive group of \mathbb{Q}_p normalized by the equality $\int_{\mathbb{Z}_p} dx = 1$. The Fourier transform of a complex-valued function $f \in L^1(\mathbb{Q}_p)$ is again a function on \mathbb{Q}_p defined as

$$\widetilde{f}(\xi) = (\mathcal{F}f)(\xi) = \int_{\mathbb{Q}_p} \chi(x\xi)f(x) \, dx$$

where χ is the canonical additive character. If $\mathcal{F}f \in L_1(\mathbb{Q}_p)$, then we have the inversion formula

$$f(x) = \int_{K} \chi(-x\xi) \widetilde{f}(\xi) \, d\xi.$$

It is possible to extend \mathcal{F} from $L_1(\mathbb{Q}_p) \cap L_2(\mathbb{Q}_p)$ to a unitary operator on $L_2(\mathbb{Q}_p)$, so that the Plancherel identity holds in this case.

In order to define distributions on \mathbb{Q}_p , we need a class of test functions. A function $f : \mathbb{Q}_p \to \mathbb{C}$ is called locally constant if there exists such an integer $l \ge 0$ that for any $x \in \mathbb{Q}_p$

$$f(x + x') = f(x)$$
 if $||x'|| \le p^{-1}$.

The smallest number I with this property is called the exponent of local constancy of the function f.

Typical examples of locally constant functions are additive characters, and also cutoff functions like

$$\Omega(x) = \begin{cases} 1, & \text{if } \|x\| \le 1; \\ 0, & \text{if } \|x\| > 1. \end{cases}$$

In particular, Ω is continuous, which is an expression of the non-Archimedean properties of \mathbb{Q}_p .

Denote by $\mathcal{D}(\mathbb{Q}_p)$ the vector space of all locally constant functions with compact supports. Note that $\mathcal{D}(\mathbb{Q}_p)$ is dense in $L^q(\mathbb{Q}_p)$ for each $q \in [1, \infty)$. In order to furnish $\mathcal{D}(\mathbb{Q}_p)$ with a topology, consider first the subspace $D_N^l \subset \mathcal{D}(\mathbb{Q}_p)$ consisting of functions with supports in a ball

$$B_N = \{x \in \mathbb{Q}_p : |x|_p \le p^N\}, \quad N \in \mathbb{Z},$$

and the exponents of local constancy $\leq I$. This space is finite-dimensional and possesses a natural direct product topology. Then the topology in $\mathcal{D}(\mathbb{Q}_p)$ is defined as the double inductive limit topology, so that

$$\mathcal{D}(\mathbb{Q}_p) = \varinjlim_{N \to \infty} \varinjlim_{I \to \infty} D_N^I.$$

If $V \subset \mathbb{Q}_p$ is an open set, the space $\mathcal{D}(V)$ of test functions on V is defined as a subspace of $\mathcal{D}(\mathbb{Q}_p)$ consisting of functions with supports in V.

The space $\mathcal{D}'(\mathbb{Q}_p)$ of Bruhat-Schwartz distributions on \mathbb{Q}_p is defined as a strong conjugate space to $\mathcal{D}(\mathbb{Q}_p)$. In contrast to the classical situation, the Fourier transform is a linear automorphism of the space $\mathcal{D}(\mathbb{Q}_p)$. By duality, \mathcal{F} is extended to a linear automorphism of $\mathcal{D}'(\mathbb{Q}_p)$. There exists a detailed theory of convolutions and direct products of distributions on \mathbb{Q}_p closely connected with the theory of their Fourier transforms.

The Vladimirov operator D^{α} , $\alpha > 0$, of fractional differentiation, is defined first as a pseudo-differential operator with the symbol $|\xi_{p}^{\alpha}\rangle$:

$$(D^{lpha}u)(x) = \mathcal{F}_{\xi o x}^{-1} \left[|\xi|^{lpha}_{p} \mathcal{F}_{y o \xi} u
ight], \quad u \in \mathcal{D}(\mathbb{Q}_{p}),$$

where we show arguments of functions and their direct/inverse Fourier transforms. There is also a hypersingular integral representation giving the same result on $\mathcal{D}(\mathbb{Q}_p)$ but making sense on much wider classes of functions (for example, bounded locally constant functions):

$$(D^{\alpha}u)(x) = \frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{\mathbb{Q}_{p}} |y|_{p}^{-\alpha-1} [u(x-y) - u(x)] \, dy$$

ション ふゆ く 山 マ チャット しょうくしゃ

Let us consider the Cauchy problem

$$egin{aligned} &rac{\partial u(t,x)}{\partial t}+\left(D_N^lpha u
ight)(t,x)-\lambda u(t,x)&=0,\quad x\in B_N,\,\,t>0;\ &u(0,x)=\psi(x),\quad x\in B_N, \end{aligned}$$

where $N \in \mathbb{Z}$, $B_N = \{x \in \mathbb{Q}_p, |x|_p \leq p^N\}$, $\psi \in \mathcal{D}(B_N)$, $\lambda = \frac{p-1}{p^{\alpha+1}-1}p^{\alpha(1-N)}$, the operator D_N^{α} is defined by restricting D^{α} to functions u_N supported in B_N and considering the resulting function $D^{\alpha}u_N$ only on B_N . Here and below we often identify a function on B_N with its extension by zero onto \mathbb{Q}_p . Note that D_N^{α} defines a positive definite operator on $L^2(B_N)$, λ is its smallest eigenvalue. The solution:

$$u(x,t) = \int\limits_{B_N} Z_N(t,x-y)\psi(y)\,dy, \quad t>0, x\in B_N,$$

where

$$Z_N(t,x) = e^{\lambda t} Z(x,t) + c(t), \quad x \in B_N,$$

 $c(t) = p^{-N} - p^{-N} (1-p^{-1}) e^{\lambda t} \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} t^n \frac{p^{-N\alpha n}}{1-p^{-\alpha n-1}},$

The kernel Z_N is a transition density of a Markov process on B_N .

◆□ > < 個 > < E > < E > E 9 < 0</p>

Probabilistic interpretation. Let $\xi_{\alpha}(t)$ be the stochastic process with independent increments corresponding to the generator D^{α} . Suppose that $\xi_{\alpha}(0) \in B_N$. Denote by $\xi_{\alpha}^{(N)}(t)$ the sum of all jumps of the process $\xi_{\alpha}(\tau), \tau \in [0, t]$, whose absolute values exceed p^N . Since ξ_{α} is right continuous with left limits, $\xi_{\alpha}^{(N)}(t)$ is finite a.s., $\xi_{\alpha}^{(N)}(0) = 0$. Let us consider the process

$$\eta_{\alpha}(t) = \xi_{\alpha}(t) - \xi_{\alpha}^{(N)}(t).$$

The processes $\eta_{\alpha}(t)$ and $\xi_{\alpha}^{(N)}(t)$ are independent processes with independent increments (Gihman and Skorohod, Stochastic Processes II).

Since the jumps of η_{α} never exceed p^N by absolute value, this process remains a.s. in B_N (due to the ultra-metric inequality). The above Cauchy problem corresponds to this process.

Harmonic analysis on the additive group of a *p*-adic ball

Let us consider the *p*-adic ball B_N as a compact subgroup of \mathbb{Q}_p . Any continuous additive character of \mathbb{Q}_p has the form $x \mapsto \chi(\xi x)$, $\xi \in \mathbb{Q}_p$. The annihilator $\{\xi \in \mathbb{Q}_p : \chi(\xi x) = 1 \text{ for all } x \in B_N\}$ coincides with the ball B_{-N} . By the Pontryagin duality theorem, the dual group $\widehat{B_N}$ to B_N is isomorphic to the discrete group \mathbb{Q}_p/B_{-N} consisting of the cosets

$$p^{m}(r_{0}+r_{1}p+\cdots+r_{N-m-1}p^{N-m-1})+B_{-N}, r_{j} \in \{0,1,\ldots,p-1\},$$

 $m \in \mathbb{Z}, m < N$. Analytically, this isomorphism means that any nontrivial continuous character of B_N has the form $\chi(\xi x), x \in B_N$, where $|\xi|_p > p^{-N}$ and $\xi \in \mathbb{Q}_p$ is considered as a representative of the class $\xi + B_{-N}$. Note that $|\xi|_p$ does not depend on the choice of a representative of the class. The Fourier transform on B_N is given by the formula

$$(\mathcal{F}_N f)(\xi) = p^{-N} \int\limits_{B_N} \chi(x\xi) f(x) dx, \quad \xi \in (\mathbb{Q}_p \setminus B_{-N}) \cup \{0\},$$

where the right-hand side, thus also $\mathcal{F}_N f$, can be understood as a function on \mathbb{Q}_p/B_{-N} .

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The Riesz kernel

$$f_{\alpha}^{(N)}(x) = \frac{1 - p^{-\alpha}}{1 - p^{\alpha - 1}} |x|_{p}^{\alpha - 1}, \quad \operatorname{Re} \alpha > 0, \quad \alpha \not\equiv 1 \pmod{\frac{2\pi i}{\log p}} \mathbb{Z}).$$

generates a distribution on B_N extended analytically in lpha to

$$\left\langle f_{-\alpha}^{(N)},\varphi\right\rangle = \lambda\varphi(0) + \frac{1-p^{\alpha}}{1-p^{-\alpha-1}}\int\limits_{B_N} [\varphi(x)-\varphi(0)]|x|_p^{-\alpha-1}dx.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The emergence of λ in the last formula "explains" its role in the probabilistic construction of a process on B_N .

Theorem

The operator D_N^{α} , $\alpha > 0$, acts from $\mathcal{D}(B_N)$ to $\mathcal{D}(B_N)$ and admits, for each $\varphi \in \mathcal{D}(B_N)$, the representations:

(i) $D_N^{\alpha} \varphi = f_{-\alpha}^{(N)} * \varphi$ where the convolution is understood in the sense of harmonic analysis on the additive group of B_N ;

(ii)

$$(D_N^{\alpha}\varphi)(x) = \lambda\varphi(x) + \frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{B_N} |y|_p^{-\alpha-1} [\varphi(x-y) - \varphi(x)] \, dy.$$

(iii) On $\mathcal{D}(B_N)$, $D_N^{\alpha} - \lambda I$ coincides with the pseudo-differential operator $\varphi \mapsto \mathcal{F}_N^{-1}(P_{N,\alpha}\mathcal{F}_N\varphi)$ where

$$P_{N,\alpha}(\xi) = \frac{1-p^{\alpha}}{1-p^{-\alpha-1}} \int_{B_N} |y|_p^{-\alpha-1} [\chi(y\xi) - 1] \, dy.$$

This symbol is extended uniquely from $(\mathbb{Q}_p \setminus B_{-N}) \cup \{0\}$ onto \mathbb{Q}_p/B_{-N} .

L^1 -Theory of the Vladimirov Type Operator on a *p*-Adic Ball

The Heat-Like Semigroup.

On a ball B_N , $N \in \mathbb{Z}$, we consider the Cauchy problem (4)-(5). Its fundamental solution Z_N defines a contraction semigroup

$$(T_N(t)u)(x) = \int\limits_{B_N} Z_N(t, x - \xi)u(\xi) d\xi$$

on $L^1(B_N)$.

ション ふゆ アメリア メリア しょうくの

Proposition

The semigroup T_N is strongly continuous.

The Generator.

Denote by A_N the generator of the contraction semigroup T_N on $L^1(B_N)$. By the Hille-Yosida theorem, A_N has a bounded resolvent $(A_N + \mu I)^{-1}$ for each $\mu > 0$. In order to study the domain $D(A_N)$, we need the following auxiliary result.

Proposition

Let the support of a function $u \in L^1(\mathbb{Q}_p)$ be contained in $\mathbb{Q}_p \setminus B_N$. Then the restriction to B_N of the distribution $D^{\alpha}u \in \mathcal{D}'(\mathbb{Q}_p)$ coincides with the constant

$$R_N = R_N(u) = \frac{1 - p^{\alpha}}{1 - p^{-\alpha - 1}} \int_{|x|_p > p^N} |x|_p^{-\alpha - 1} u(x) \, dx.$$

The following main result of this section is based on this property. As before, A denotes the generator of the semigroup S(t) on $L^1(\mathbb{Q}_p)$.

Proposition

If $\psi \in D(A)$, then the restriction ψ_N of the function ψ to B_N belongs to $D(A_N)$, and $A_N\psi_N = (D_N^{\alpha} - \lambda)\psi_N$ where $D_N^{\alpha}\psi_N$ is understood in the sense of $\mathcal{D}'(B_N)$, that is ψ_N is extended by zero to a function on \mathbb{Q}_p , D^{α} is applied to it in the distribution sense, and the resulting distribution is restricted to B_N .

In the study of nonlinear equations, this result makes it possible to use the operator A_N in the investigation of local properties of functions. This is a substitute for the local Sobolev and Marcinkiewicz spaces used in the classical literature.

Some Publications

- 1. A. N. Kochubei, Parabolic equations over the field of *p*-adic numbers, *Math. USSR Izvestiya*, **39** (1992), 1263–1280.
- 2. A. N. Kochubei, Heat equation in a *p*-adic ball, *Meth. Funct. Anal. and Topol.*, **2**, No. 3-4 (1996), 53–58.
- 3. A. N. Kochubei, *Pseudo-Differential Equations and Stochastics* over Non-Archimedean Fields, Marcel Dekker, New York, 2001.

ション ふゆ く 山 マ チャット しょうくしゃ

4. A. N. Kochubei, Linear and nonlinear heat equations on a p-adic ball, *Ukrainian Math. J.*, **70**, No. 2 (2018), 217–231.