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Preliminaries

1. p-Adic numbers

Let p be a prime number. The �eld of p-adic numbers is the
completion Qp of the �eld Q of rational numbers, with respect to
the absolute value |x |p de�ned by setting |0|p = 0,

|x |p = p−ν if x = pν
m

n
,

where ν,m, n ∈ Z, and m, n are prime to p. Example: |p|p = p−1.

Qp is a locally compact topological �eld.

Note that by Ostrowski's theorem there are no absolute values on
Q, which are not equivalent to the �Euclidean� one, or one of | · |p.
We denote Zp = {x ∈ Qp : |x |p ≤ 1}. Zp, as well as all balls in
Qp, is simultaneously open and closed.



The absolute value |x |p, x ∈ Qp, has the following properties:

|x |p = 0 if and only if x = 0;

|xy |p = |x |p · |y |p;

|x + y |p ≤ max(|x |p, |y |p).

The latter property called the ultra-metric inequality (or the
non-Archimedean property) implies the total disconnectedness of
Qp in the topology determined by the metric |x − y |p, as well as
many unusual geometric properties (Example: two balls either do

not intersect, or one of them is contained in another). Note also
the following consequence of the ultra-metric inequality:

|x + y |p = max(|x |p, |y |p) if |x |p 6= |y |p.



The absolute value |x |p takes the discrete set of non-zero values
pN , N ∈ Z. If |x |p = pN , then x admits a (unique) canonical
representation

x = p−N
(
x0 + x1p + x2p

2 + · · ·
)
,

where x0, x1, x2, . . . ∈ {0, 1, . . . , p − 1}, x0 6= 0. The series
converges in the topology of Qp. For example,

−1 = (p − 1) + (p − 1)p + (p − 1)p2 + · · · , | − 1|p = 1.

The canonical representation shows the hierarchical structure of Qp.



Figure: Structure of the p-adic tree.

Khrennikov et al (2016) - p-adic model of a porous medium.



2. Field extensions

If a �eld k is a sub�eld of a �eld K , then K is called an extension
of k . In order to emphasize that K is considered as an extension of
k , we denote the extension by K/k .
An extension K/k can be considered as a vector space over k . An
extension K/k is called �nite if K is a �nite-dimensional vector
space over k . Its dimension (K : k) is called the degree of the
extension K/k .
A local �eld is a non-discrete disconnected locally compact �eld.

Theorem. Every local �eld of characteristic 0 is a �nite extension
of Qp.



Qp has �nite extensions of all degrees. In particular, for each degree
n there exists a unique unrami�ed extension K possessing a basis
identifying each element x ∈ K with a vector of coe�cients
(ξ1, . . . , ξn) ∈ Qn

p, so that the absolute value on K equals
‖x‖ = ‖x‖nmax where

‖x‖max = max
1≤j≤n

|ξj |p,



3. Harmonic analysis on Qp: complex-valued functions

Denote by dx the Haar measure on the additive group of Qp

normalized by the equality
∫
Zp

dx = 1. The Fourier transform of a

complex-valued function f ∈ L1(Qp) is again a function on Qp

de�ned as

f̃ (ξ) = (F f )(ξ) =

∫
Qp

χ(xξ)f (x) dx

where χ is the canonical additive character.
If F f ∈ L1(Qp), then we have the inversion formula

f (x) =

∫
K

χ(−xξ)f̃ (ξ) dξ.

It is possible to extend F from L1(Qp) ∩ L2(Qp) to a unitary
operator on L2(Qp), so that the Plancherel identity holds in this
case.



In order to de�ne distributions on Qp, we need a class of test
functions. A function f : Qp → C is called locally constant if there
exists such an integer l ≥ 0 that for any x ∈ Qp

f (x + x ′) = f (x) if ‖x ′‖ ≤ p−l .

The smallest number l with this property is called the exponent of
local constancy of the function f .
Typical examples of locally constant functions are additive
characters, and also cuto� functions like

Ω(x) =

{
1, if ‖x‖ ≤ 1;

0, if ‖x‖ > 1.

In particular, Ω is continuous, which is an expression of the
non-Archimedean properties of Qp.



Denote by D(Qp) the vector space of all locally constant functions
with compact supports. Note that D(Qp) is dense in Lq(Qp) for
each q ∈ [1,∞). In order to furnish D(Qp) with a topology,
consider �rst the subspace D l

N ⊂ D(Qp) consisting of functions
with supports in a ball

BN = {x ∈ Qp : |x |p ≤ pN}, N ∈ Z,

and the exponents of local constancy ≤ l . This space is
�nite-dimensional and possesses a natural direct product topology.
Then the topology in D(Qp) is de�ned as the double inductive limit
topology, so that

D(Qp) = lim−→
N→∞

lim−→
l→∞

D l
N .

If V ⊂ Qp is an open set, the space D(V ) of test functions on V is
de�ned as a subspace of D(Qp) consisting of functions with
supports in V .



The space D′(Qp) of Bruhat-Schwartz distributions on Qp is
de�ned as a strong conjugate space to D(Qp). In contrast to the
classical situation, the Fourier transform is a linear automorphism
of the space D(Qp). By duality, F is extended to a linear
automorphism of D′(Qp). There exists a detailed theory of
convolutions and direct products of distributions on Qp closely
connected with the theory of their Fourier transforms.



The Vladimirov operator Dα, α > 0, of fractional di�erentiation, is
de�ned �rst as a pseudo-di�erential operator with the symbol |ξαp :

(Dαu)(x) = F−1ξ→x

[
|ξ|αpFy→ξu

]
, u ∈ D(Qp),

where we show arguments of functions and their direct/inverse
Fourier transforms. There is also a hypersingular integral
representation giving the same result on D(Qp) but making sense
on much wider classes of functions (for example, bounded locally
constant functions):

(Dαu) (x) =
1− pα

1− p−α−1

∫
Qp

|y |−α−1p [u(x − y)− u(x)] dy .



Parabolic equations generated by the Vladimirov operator

a) The Cauchy problem for a heat-like equation:

∂u(x , t)

∂t
+ (Dαu)(x , t) = f (x , t), x ∈ Qp, 0 < t ≤ T ,

u(x , 0) = ϕ(x), x ∈ Qp,

Haran, 1990
Ismagilov, 1991
K., 1991
Vladimirov, Volovich and Zelenov, 1994
Blair, 1995,
Varadarajan, 1997



Heat kernel for Dα:

Z (t, x) =
∞∑

k=−∞
pkck(t)∆−k(x)

where ∆l(x) is the indicator function of the ball Bl ,

ck(t) = exp
(
−pkαt

)
− exp

(
−p(k+1)αt

)
.

Another expression for Z (t, x), valid for x 6= 0, is

Z (t, x) =
∞∑

m=1

(−1)m

m!
· 1− pαm

1− p−αm−1
tm|x |−αm−1p .

Z is a probability density and

0 < Z (t, x) ≤ Ct(t1/α + |x |p)−α−1, t > 0, x ∈ Qp.



b) A general theory of parabolic equations (K., 1991):

∂u(x , t)

∂t
+ a0(x , t)(Dαu)(x , t) +

n∑
k=1

ak(x , t)(Dαku)(x , t)

+ b(x , t)u(x , t) = f (x , t), x ∈ Qp, t ∈ (0,T ],

0 < α1 < α2 < . . . < αn < α.
Parametrix method, Fundamental solutions, Cauchy problem
(existence, uniqueness, stabilization, probabilistic interpretation).

Multi-dimensional problems: 1) reduction to the unrami�ed
extension (K., 2001); 2) other methods (Zuniga-Galindo and his
school). See the talk by A. Antoniouk.



c) A Heat-Like Equation on a p-Adic Ball

Let us consider the Cauchy problem

∂u(t, x)

∂t
+ (Dα

Nu) (t, x)− λu(t, x) = 0, x ∈ BN , t > 0;

u(0, x) = ψ(x), x ∈ BN ,

where N ∈ Z, BN = {x ∈ Qp, |x |p ≤ pN}, ψ ∈ D(BN),

λ =
p − 1

pα+1 − 1
pα(1−N), the operator Dα

N is de�ned by restricting

Dα to functions uN supported in BN and considering the resulting
function DαuN only on BN . Here and below we often identify a
function on BN with its extension by zero onto Qp. Note that Dα

N

de�nes a positive de�nite operator on L2(BN), λ is its smallest
eigenvalue.



The solution:

u(x , t) =

∫
BN

ZN(t, x − y)ψ(y) dy , t > 0, x ∈ BN ,

where

ZN(t, x) = eλtZ (x , t) + c(t), x ∈ BN ,

c(t) = p−N − p−N(1− p−1)eλt
∞∑
n=0

(−1)n

n!
tn

p−Nαn

1− p−αn−1
,

The kernel ZN is a transition density of a Markov process on BN .

Other probabilistic interpretations and an interpretation in terms of
harmonic analysis on the additive group of a p-adic ball will be
considered in a separate talk.



Nonlinear Equations

Below we consider a p-adic analog of one of the most important
classical nonlinear equations, the porous medium equation:

∂u

∂t
+ Dα(ϕ(u)) = 0, u = u(t, x), t > 0, x ∈ Qp, (1)

where ϕ is a strictly monotone increasing continuous real function,
|ϕ(s)| ≤ C |s|m for s ∈ R (C > 0, m ≥ 1). A typical example of the
latter is ϕ(u) = u|u|m−1, m > 1.

Another interesting example is the p-adic Navier-Stokes equation for a porous
medium (Oleschko, Khrennikov et al, 2017):

∂u(t, x)

∂t
= u(t, x)(D1u)(t, x)− θ(D2u)(t, x) + G(t, x), t > 0, x ∈ Qp,

where θ > 0, G is a given function. Oleschko, Khrennikov et al derived this
equation from the discretized model of hydrodynamics (Benzi et al, 1997).



Our strategy for studying Eq. (1) is as follows. There exists an
abstract theory of the equations

∂u

∂t
+ A(ϕ(u)) = 0. (2)

developed by Crandall and Pierre (1982) and based on the theory of
stationary equations

u + Aϕ(u) = f (3)

developed by Br�ezis and Strauss (1973). In Eq. (2) and (3), A is a
linear m-accretive operator in L1(Ω) where Ω is a σ-�nite measure
space. Under some natural assumptions, the nonlinear
operatorAϕ = A ◦ ϕ is accretive and admits an m-accretive
extension Aϕ, the generator of a contraction semigroup of nonlinear
operators. This result gives information on a kind of generalized
solvability of Eq. (2), though the available description of Aϕ is not
quite explicit.



In order to use this method for Eq. (1), we need an L1-theory of the
Vladimirov operator Dα, which is a subject of independent interest.
In the classical situation where Ω = Rn, A is the Laplacian, there
are stronger results (B�enilan, Br�ezis and Crandall, 1975) based on
the study of Eq. (3), showing that Aϕ is m-accretive itself. This
employs some delicate tools of local analysis of solutions, such as
imbedding theorems for Marcinkiewicz and Sobolev spaces in
bounded domains.
For our p-adic situation, we prove a little weaker result, namely the
m-accretivity of the closure of the operator Aϕ. Our tool is the
L1-theory of the Vladimirov type operator on a p-adic ball.



The Vladimirov Operator in L1(Qp)

The Heat-Like Equation and the Corresponding Semigroup of

Operators.
Using the fundamental solution Z , we de�ne the operator family

(S(t)ψ)(x) =

∫
Qp

Z (t, x − ξ)ψ(ξ) dξ, ψ ∈ L1(Qp),

t > 0. S is a contraction semigroup in L1(Qp).

Proposition

S(t) has the C0-property.



De�nition
We de�ne the realization A of Dα in L1(Qp) as the generator of

the semigroup S(t).

Let D(A) be the domain of the operator A.

Proposition

If u ∈ D(Qp), then u ∈ D(A) and Au = Dαu where the right-hand

side is understood as usual in terms of the Fourier transform or the

hypersingular integral representation.

The proof is based on the detailed analysis of actions of Dα and
S(t) on characteristic functions of open-closed sets.



The Green function.

Since the operator A in L1(Qp) is de�ned as the generator of the
contraction semigroup S(t) = e−tA, then by the Hille-Yosida
theorem, we can �nd the resolvent Rµ(A) = (A + µI )−1, µ > 0, by
the formula

Rµ(A)ψ = −
∞∫
0

e−µtS(t)ψ dt, ψ ∈ L1(Qp).

We will consider below the case where α > 1, in which the
resolvent is an integral operator with a kernel possessing some
smoothness properties. Thus, from now on,

α > 1.



In this case, Rµ is a convolution operator with the continuous
integral kernel Eµ(x − ξ), such that Eµ(x) ∼ const ·|x |−α−1p ,
|x |p →∞. The function Eµ is represented by the uniformly
convergent series

Eµ(x) =
∞∑

N=−∞
e(N)
µ (x),

e(N)
µ (x) =

∫
|ξ|p=pN

χ(−xξ)

|ξ|αp + µ
dξ.



Description of A in the distribution sense.

Let u ∈ L1(Qp). Then Dαu can be de�ned as a distribution from

D′(Qp), a convolution u ∗ f−α, f−α(x) =
|x |−α−1p

Γp(−α)
,

Γp(z) =
1− pz−1

1− p−z
.

f−α de�nes a distribution by analytic continuation.

Proposition

The operator A de�ned as a semigroup generator has the domain

D(A) = {u ∈ L1(Qp) : Dαu ∈ L1(Qp)} where Au = Dαu
(understood in the distribution sense).



L1-Theory of the Vladimirov Type Operator on a p-Adic Ball

The Heat-Like Semigroup.

On a ball BN , N ∈ Z, we consider the Cauchy problem (4)-(5). Its
fundamental solution ZN de�nes a contraction semigroup

(TN(t)u)(x) =

∫
BN

ZN(t, x − ξ)u(ξ) dξ

on L1(BN).

Proposition

The semigroup TN is strongly continuous.



The Generator.

Denote by AN the generator of the contraction semigroup TN on
L1(BN). By the Hille-Yosida theorem, AN has a bounded resolvent
(AN + µI )−1 for each µ > 0. In order to study the domain D(AN),
we need the following auxiliary result.

Proposition

Let the support of a function u ∈ L1(Qp) be contained in Qp \ BN .

Then the restriction to BN of the distribution Dαu ∈ D′(Qp)
coincides with the constant

RN = RN(u) =
1− pα

1− p−α−1

∫
|x |p>pN

|x |−α−1p u(x) dx .

The following main result of this section is based on this property.
As before, A denotes the generator of the semigroup S(t) on
L1(Qp).



Proposition

If ψ ∈ D(A), then the restriction ψN of the function ψ to BN

belongs to D(AN), and ANψN = (Dα
N − λ)ψN where Dα

NψN is

understood in the sense of D′(BN), that is ψN is extended by zero

to a function on Qp, D
α is applied to it in the distribution sense,

and the resulting distribution is restricted to BN .

In the study of nonlinear equations, this result makes it possible to
use the operator AN in the investigation of local properties of
functions. This is a substitute for the local Sobolev and
Marcinkiewicz spaces used in the classical literature.



Nonlinear Equations: the Main Result
Let us return to Eq. (1) interpreted as Eq. (2) on L1(Qp), where
the linear operator A is a generator of the semigroup S(t), ϕ is a

strictly monotone increasing continuous real function,
|ϕ(s)| ≤ C |s|m, m ≥ 1. Below we re-interpret Eq. (1) as the

equation

∂u

∂t
+ Aϕ(u) = 0 (4)

where Aϕ is the closure of Aϕ.
Recall that a mild solution of the Cauchy problem for a nonlinear
equation with the initial condition u(0, x) = u0(x) is de�ned as a
function given by a limit, uniformly on compact time intervals, of
solutions of the problem for the di�erence equations approximating
the di�erential one. This the usual �nonlinear version� of the notion

of a generalized solution.



Theorem
The operator Aϕ is m-accretive, so that, for any initial function

u0 ∈ L1(Qp), the Cauchy problem for Eq. (6) has a unique mild

solution.

Idea of Proof. By the general results of Crandall and Pierre, the
operator Aϕ is accretive. Therefore it is su�cient to show that
I + Aϕ has a dense range. This property is proved using a priori
estimates by Br�ezis and Strauss, relative local compactness
criterion for subsets of L1(Qp) and the local compactness
considerations based on properties of the operator AN .



Explicit Solution: an Example
Let us consider Eq. (1) with α > 0, ϕ(u) = |u|m, m > 1. We look

for a solution of the form

u(t, x) = ρ

(
|x |γp
t0 − t

)ν
, 0 < t < t0, x ∈ Qp,

where t0 > 0, γ > 0, ν > 0, 0 6= ρ ∈ R.
After investigating possible values of parameters, we come to the

solution

u(t, x) = ρ(t0 − t)−
1

m−1 |x |
α

m−1
p

where

ρ = −

[
Γp(1 + α

m−1)

(m − 1)Γp(1 + αm
m−1)

] 1
m−1

.



In a similar way, we can obtain another solution

u(t, x) = µ(t0 + t)−
1

m−1 |x |
α

m−1
p , t > 0, x ∈ Qp,

where µ = −ρ.



p-Adic Navier-Stokes Equation
A p-adic model of propagation of �uids through the capillary

structure of a porous medium was suggested by Khrennikov et al
(2016). In this model an idealized fragment of a porous medium is
identi�ed with the p-adic ball interpreted as the set of (generally

in�nite) paths of a homogeneous rooted tree of valence p + 1. Here
p is a �xed prime number.

Natural developments prompted by this idea include both new
mathematical models of percolation phenomena and purely

mathematical works dealing with p-adic analogs of equations of
mathematical hydrodynamics, such as the porous medium equation.



The p-adic Navier-Stokes equation (Khrennikov et al, 2017) is a
pseudo-di�erential evolution equation on the �eld Qp of p-adic
numbers describing average velocity of a �uid moving through the
p-tree of capillaries. This nonlinear equation deduced from the
discretized model of hydrodynamics (Benzi et al, 1997) has the
form

∂u(t, x)

∂t
= u(t, x)(D1u)(t, x)− θ(D2u)(t, x) (5)

where θ > 0, Dα (α > 0) is the Vladimirov fractional di�erentiation
operator on Qp.



In this work we initiate the mathematical theory of the equation
(5). Note that there exists a well-developed theory of linear
pseudo-di�erential equations on Qp. The study of nonlinear
equations of this kind is only beginning.
Our method of investigating the equation (5) is based on abstract
results by von Wahl (1985) who found su�cient conditions of local
solvability of the Cauchy problem for the equation

v ′(t) + Av(t) + M(v(t)) = 0, t > 0, (6)

where A is the generator of an analytic semigroup e−tA in a Banach
space B, M is a nonlinear operator subordinated to A1−ρ,
0 < ρ < 1.



In our situation, where we study the local solvability of (5) on a
bounded domain, B = Lq(BN) where 1 < q <∞,
BN =

{
x ∈ Qp : |x |p ≤ pN

}
is a p-adic ball, the operators A and

M are constructed from the Vladimirov operators D2 and D1 on
the ball. Note that the latter operators are nonlocal, which makes
even the de�nition of an operator on a bounded domain nontrivial.
In addition, there is an L2-theory of the Vladimirov operator and
the initial steps towards its L1-theory. Here we have to develop its
Lq-theory, in particular to prove certain inequalities for various
Lq-norms involving Dαu and Dβu, 0 < α < β.



A theorem by von Wahl.
Let us consider the equation (2), that is
v ′(t) + Av(t) + M(v(t)) = 0, t > 0, with the initial condition
v(0) = ϕ, ϕ ∈ D(A), where a linear operator A is the generator of
an analytic semigroup in a Banach space B, M is a nonlinear
operator in B. It is assumed that, for some ρ ∈ (0, 1), M acts from
the domain D(A1−ρ) to B and satis�es the following condition: if
v ,w ∈ D(A), ‖Av‖+ ‖Aw‖ ≤ h, h > 0, then there exists such a
constant k(h) > 0 that{

‖M(u)−M(v)‖ ≤ k(h)‖A1−ρ(v − w)‖,
‖M(v)‖ ≤ k(h).

Here ‖ · ‖ means the norm in B.
The von Wahl theorem states that, under the above conditions,
there exists T (ϕ) ∈ (0,∞] with the following property. For any
T < T (ϕ), there exists a unique function v ∈ C 1([0,T ],B), such
that Av ∈ C ([0,T ],B), satisfying the equation (2) and the initial
condition v(0) = ϕ.



Inequalities

1. Fractional powers. Below the fractional powers are understood in
the sense of the theory of generators of analytic semigroups.

Proposition

Let 0 < α ≤ β. For all u ∈ D(BN),

‖Dα
Nu‖Lq(BN)

≤ C

∥∥∥∥(Dβ
N

)α/β
u

∥∥∥∥
Lq(BN)

where C does not depend on u.



2. Comparison of fractional powers. Let 0 < α < β ≤ α+ 1, β > 1,
1 ≤ q ≤ r <∞.

Proposition

Suppose that

α− β +
1

q
<

1

r
≤ 1

q
.

Then for any u ∈ D(BN)

‖Dα
Nu‖Lr (BN)

≤ C
∥∥∥Dβ

Nu
∥∥∥
Lq(BN)

where the constant C does not depend on u.



Local solvability of the p-adic Navier-Stokes

equation

Let us consider the equation

∂u(t, x)

∂t
= u(t, x)

(
D1
Nu
)

(t, x)− θ
(
D2
Nu
)

(t, x)

with the initial condition

u(0, x) = ϕ(x).

We apply von Wahl's theorem with B = Lq(BN), 1 < q <∞,
A = θD2

N , M(u) = u · D1
Nu. As we know, A is a generator of an

analytic subgroup in B.



Theorem
For any ϕ ∈ D(A) (in particular, for any ϕ ∈ D(BN)), there exists

T (ϕ) ∈ (0,∞] with the following property. For any T ,

0 < T < T (ϕ), the above Cauchy problem possesses a unique

solution u ∈ C 1([0,T ],B), such that Au ∈ C ([0,T ],B) .
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