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Abstract

Let I = (xv1 , . . . , xvq ) be a square-free monomial ideal of a polynomial ring
K[x1, . . . , xn] over an arbitrary field K and let A be the incidence matrix
with column vectors v1, . . . , vq. We will establish some connections between
algebraic properties of certain graded algebras associated to I and combina-
torial optimization properties of certain polyhedra and clutters associated to
A and I respectively. Some applications to Rees algebras and combinatorial
optimization are presented.

1 Introduction

Let R = K[x1, . . . , xn] be a polynomial ring over a field K and let I be an
ideal of R of height g ≥ 2 minimally generated by a finite set of square-free
monomials F = {xv1 , . . . , xvq} of degree at least two. As usual we use xa as
an abbreviation for xa1

1 · · ·xan
n , where a = (a1, . . . , an) ∈ Nn. A clutter with

vertex set X is a family of subsets of X, called edges, none of which is included in
another. We associate to the ideal I a clutter C by taking the set of indeterminates
X = {x1, . . . , xn} as vertex set and E = {S1, . . . , Sq} as edge set, where

Sk = supp(xvk) = {xi| 〈ei, vk〉 = 1}.

Here 〈 , 〉 denotes the standard inner product and ei is the ith unit vector. For this
reason I is called the edge ideal of C. To stress the relationship between I and C we
will use the notation I = I(C). A basic example of clutter is a graph. Algebraic
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and combinatorial properties of edge ideals and graded algebras associated to
graphs have been studied in [10, 20, 32, 33, 38]. The related notion of facet ideal
has been studied by Faridi [16, 17] and Zheng [44].

The blowup algebras studied here are the Rees algebra

R[It] = R⊕ It⊕ · · · ⊕ Iiti ⊕ · · · ⊂ R[t],

where t is a new variable, and the associated graded ring

grI(R) = R/I ⊕ I/I2 ⊕ · · · ⊕ Ii/Ii+1 ⊕ · · · ' R[It]⊗R (R/I),

with multiplication (a + Ii+1)(b + Ij+1) = ab + Ii+j+1, a ∈ Ii, b ∈ Ij .
In the sequel A will denote the incidence matrix of order n× q whose column

vectors are v1, . . . , vq. In order to link the properties of these algebras with
combinatorial optimization problems we consider the set covering polyhedron

Q(A) = {x ∈ Rn|x ≥ 0; xA ≥ 1},

and the related system of linear inequalities x ≥ 0; xA ≥ 1, where 1 = (1, . . . , 1).
Recall that this system is called totally dual integral (TDI) if the maximum in
the LP-duality equation

min{〈α, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ α} (1)

has an integral optimum solution y for each integral vector α with finite maxi-
mum. If the system is totally dual integral it is seen that Q(A) has only integral
vertices, this follows from [30, Theorem 22.1, Corollary 22.1.a, pp. 310-311].

We are able to express algebraic properties of blowup algebras in terms of TDI
systems and combinatorial properties of clutters, such as the integrality of Q(A)
and the König property. An important goal here is to establish bridges between
commutative algebra and combinatorial optimization, which could be beneficial
to both areas. Necessary and/or sufficient conditions for the normality of R[It]
and the reducedness of grI(R) are shown. Some of our results give some support
to a conjecture of Conforti and Cornuéjols (Conjecture 4.17). Applications to
Rees algebras theory and combinatorial optimization are presented.

Along the paper we introduce some of the algebraic and combinatorial notions
that are most relevant. For unexplained terminology and notation we refer to
[26, 29, 30] and [28, 35]. See [11] for detailed information about clutters.

2 Vertex covers of clutters

The set of non-negative real numbers will be denoted by R+. To avoid repetitions
throughout this article we shall use the notation and assumptions introduced in
Section 1. For convenience we shall always assume that each variable xi occurs
in at least one monomial of F .
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Definition 2.1 A subset C ⊂ X is a minimal vertex cover of the clutter C if:
(i) every edge of C contains at least one vertex of C, and (ii) there is no proper
subset of C with the first property. If C satisfies condition (i) only, then C is
called a vertex cover of C.

The first aim is to characterize this notion in terms of the integral vertices of
set covering polyhedrons and the minimal primes of edge ideals.

Notation The support of xa = xa1
1 · · ·xan

n is supp(xa) = {xi | ai > 0}.

Proposition 2.2 The following are equivalent :

(a) p = (x1, . . . , xr) is a minimal prime of I = I(C).

(b) C = {x1, . . . , xr} is a minimal vertex cover of C.

(c) α = e1 + · · ·+ er is a vertex of Q(A).

Proof. (a) ⇔ (b): It follows readily by noticing that the minimal primes of
the square-free monomial ideal I are face ideals, that is, they are generated by
subsets of the set of variables, see [39, Proposition 5.1.3].

(b) ⇒ (c): Fix 1 ≤ i ≤ r. To make notation simpler fix i = 1. We may assume
that there is an s1 such that xvj = x1mj for j = 1, . . . , s1 and x1 /∈ supp(xvj ) for
j > s1. Notice that supp(mk1) ∩ (C \ {x1}) = ∅ for some 1 ≤ k1 ≤ s1, otherwise
C \ {x1} is a vertex cover of C strictly contained in C, a contradiction. Thus
supp(mk1) ∩ C = ∅ because I is square-free. Hence for each 1 ≤ i ≤ r there
is vki

in {v1, . . . , vq} such that xvki = ximki
and supp(mki

) ⊂ {xr+1, . . . , xn}.
The vector α is clearly in Q(A), and since {ei}n

i=r+1 ∪ {vk1 , . . . , vkr} is linearly
independent, and

〈α, ei〉 = 0 (i = r + 1, . . . , n); 〈α, vki
〉 = 1 (i = 1, . . . , r),

we get that the vector α is a basic feasible solution. Therefore by [1, Theorem 2.3]
α is a vertex of Q(A).

(c) ⇒ (b): It is clear that C intersects all the edges of the clutter C because
α ∈ Q(A). If C ′ ( C is a vertex cover of C, then the vector α′ =

∑
xi∈C′ ei

satisfies α′A ≥ 1 and α′ ≥ 0. Using that α is a basic feasible solution in the sense
of [1] it is not hard to verify that α′ is also a vertex of Q(A). By the finite basis
theorem [41, Theorem 4.1.3] we can write

Q(A) = Rn
+ + conv(V ),

where V is the vertex set of Q(A). As α = β + α′, for some 0 6= β ∈ Rn
+, we get

Q(A) = Rn
+ + conv(V \ {α}).

Hence the vertices of Q(A) are contained in V \ {α} (see [4, Theorem 7.2]), a
contradiction. Thus C is a minimal vertex cover. 2
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Corollary 2.3 A vector α ∈ Rn is an integral vertex of Q(A) if and only if α is
equal to ei1 + · · ·+ eis for some minimal vertex cover {xi1 , . . . , xis} of C.

Proof. By Proposition 2.2 it suffices to observe that any integral vertex of Q(A)
has entries in {0, 1} because A has entries in {0, 1}. See [34, Lemma 4.6]. 2

A set of edges of the clutter C is independent if no two of them have a common
vertex. We denote the smallest number of vertices in any minimal vertex cover of
C by α0(C) and the maximum number of independent edges of C by β1(C). These
numbers are related to min-max problems because they satisfy:

α0(C) ≥ min{〈1, x〉|x ≥ 0;xA ≥ 1}
= max{〈y,1〉| y ≥ 0;Ay ≤ 1} ≥ β1(C).

Notice that α0(C) = β1(C) if and only if both sides of the equality have integral
optimum solutions.

These two numbers can be interpreted in terms of I. By Proposition 2.2 the
height of the ideal I, denoted by ht(I), is equal to the covering number α0(C).
On the other hand the independence number β1(C) is equal to mgrade(I), the
monomial grade of the ideal:

β1(C) = max{r| ∃ a regular sequence of monomials xα1 , . . . , xαr ∈ I}.

The equality α0(C) = β1(C) is equivalent to require x1 · · ·xntg ∈ R[It], where g
is the covering number α0(C).

Definition 2.4 If α0(C) = β1(C) we say that the clutter C (or the ideal I) has
the König property .

3 Rees algebras and polyhedral geometry

Let A = {v1, . . . , vq} be the set of exponent vectors of xv1 , . . . , xvq and let

A′ = {e1, . . . , en, (v1, 1), . . . , (vq, 1)} ⊂ Rn+1,

where ei is the ith unit vector. The Rees cone of A is the rational polyhedral cone,
denoted by R+A′, consisting of the linear combinations of A′ with non-negative
coefficients. Note dim(R+A′) = n + 1. Thus according to [41] there is a unique
irreducible representation

R+A′ = H+
e1
∩ · · · ∩H+

en+1
∩H+

a1
∩ · · · ∩H+

ar
(2)

such that 0 6= ai ∈ Qn+1 and 〈ai, en+1〉 = −1 for all i. As usual H+
a denotes the

closed halfspace
H+

a = {α ∈ Rn+1| 〈α, a〉 ≥ 0}
and Ha is the hyperplane through the origin with normal vector a.
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Theorem 3.1 The function ϕ: Qn → Qn+1 given by ϕ(α) = (α,−1) induces a
bijective map

ϕ:V −→ {a1, . . . , ar}

between the set of vertices V of Q(A) and the set {a1, . . . , ar} of normal vectors
that occur in the irreducible representation of R+A′.

Proof. First we show the containment ϕ(V ) ⊂ {a1, . . . , ar}. Take α in V . By
[1, Theorem 2.3] α is a basic feasible solution. Hence 〈α, vi〉 ≥ 1 for i = 1, . . . , q,
α ≥ 0, and there exist n linearly independent vectors vi1 , . . . , vik , ej1 , . . . , ejs in
A ∪ {e1, . . . , en} such that 〈α, vih〉 = 1 and 〈α, ejm〉 = 0 for all h, m. It follows
that the set

F = H(α,−1) ∩ R+A′

has dimension n and R+A′ ⊂ H+
(α,−1). Therefore F is a facet of R+A′. Using

[41, Theorem 3.2.1] we obtain that F = R+A′ ∩ Hap for some 1 ≤ p ≤ r, and
consequently H(α,−1) = Hap . Since the first n entries of ap are non-negative and
〈ap, en+1〉 = −1 it follows that ϕ(α) = (α,−1) = ap, as desired.

To show the reverse containment write ap = (α,−1), with 1 ≤ p ≤ r and
α ∈ Rn. We will prove that α is a vertex of Q(A). Since Eq. (2) is an irreducible
representation one has that the set

F = H(α,−1) ∩ R+A′

is a facet of the Rees cone R+A′, see [41, Theorem 3.2.1]. Hence there is a linearly
independent set

{(vi1 , 1), . . . , (vik , 1), ej1 , . . . , ejs} ⊂ A′ (k + s = n)

such that

〈(vih , 1), (α,−1)〉 = 0 ⇒ 〈vih , α〉 = 1 (h = 1, . . . , k), (3)
〈ejm , (α,−1)〉 = 0 ⇒ 〈ejm , α〉 = 0 (m = 1, . . . , s). (4)

It is not hard to see that vi1 , . . . , vik , ej1 , . . . , ejs are linearly independent vectors
in Rn. Indeed if

λ1vi1 + · · ·+ λkvik + µ1ej1 + · · ·+ µsejs = 0 (λh, µm ∈ R),

then taking inner product with α and using Eqs. (3) and (4) we get

λ1 + · · ·+ λk = 0 ⇒ λ1(vi1 , 1) + · · ·+ λk(vik , 1) + µ1ej1 + · · ·+ µsejs = 0.

Therefore λh = 0 and µm = 0 for all h, m, as desired. From R+A′ ⊂ H+
ap

and
H+

ap
= H+

(α,−1) we get α ≥ 0 and 〈α, vi〉 ≥ 1 for all i. Altogether we obtain that
α is a basic feasible solution, that is, α is a vertex of Q(A). 2
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Let p1, . . . , ps be the minimal primes of the edge ideal I = I(C) and let

Ck = {xi|xi ∈ pk} (k = 1, . . . , s)

be the corresponding minimal vertex covers of the clutter C. By Proposition 2.2
and Theorem 3.1 in the sequel we may assume that

ak = (
∑

xi∈Ck
ei,−1) (k = 1, . . . , s).

Notation Let dk be the unique positive integer such that dkak has relatively prime
integral entries. We set `k = dkak for k = 1, . . . , r. If the first n rational entries
of ak are written in lowest terms, then dk is the least common multiple of the
denominators. For 1 ≤ k ≤ r, we have dk = −〈`k, en+1〉.

Definition 3.2 The set covering polyhedron Q(A) is integral if all its vertices
have integral entries.

Corollary 3.3 The irreducible representation of the Rees cone has the form

R+A′ = H+
e1
∩ · · · ∩H+

en+1
∩H+

`1
∩ · · · ∩H+

`r
, (5)

dk = 1 if and only if 1 ≤ k ≤ s, and Q(A) is integral if and only if r = s.

Proof. It follows from Theorem 3.1 and Corollary 2.3. 2

Notation In the sequel we shall always assume that `1, . . . , `r are the integral
vectors of Eq. (5).

Recall that the Simis cone of A is the rational polyhedral cone

Cn(A) = H+
e1
∩ · · · ∩H+

en+1
∩H+

`1
∩ · · · ∩H+

`s
,

and the symbolic Rees algebra of I is the K algebra:

Rs(I) = R + I(1)t + I(2)t2 + · · ·+ I(i)ti + · · · ⊂ R[t],

where I(i) = pi
1 ∩ · · · ∩ pi

s is the ith symbolic power of I. Symbolic Rees algebras
have a combinatorial interpretation [22]. Notice the following description:

I(b) = ({xa| 〈(a, b), `i〉 ≥ 0 for i = 1, . . . , s}).

A first use of the Simis cone is the following expression for the symbolic Rees
algebra. In particular Rs(I) is a finitely generated K-algebra [27] by Gordan’s
Lemma [6].

Theorem 3.4 ([15]) If S = Zn+1 ∩ Cn(A) and K[S] = K[{xatb| (a, b) ∈ S}] is
its semigroup ring, then Rs(I) = K[S].
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Let NA′ be the subsemigroup of Nn+1 generated by A′, consisting of the linear
combinations of A′ with non-negative integer coefficients. The Rees algebra of I
can be written as

R[It] = K[{xatb| (a, b) ∈ NA′}] (6)
= R⊕ It⊕ · · · ⊕ Iiti ⊕ · · · ⊂ R[t]. (7)

According to [39, Theorem 7.2.28] and [36, p. 168] the integral closure of R[It]
in its field of fractions can be expressed as

R[It] = K[{xatb| (a, b) ∈ Zn+1 ∩ R+A′}] (8)
= R⊕ It⊕ · · · ⊕ Iiti ⊕ · · · , (9)

where Ii = ({xa ∈ R| ∃ p ≥ 1; (xa)p ∈ Ipi}) is the integral closure of Ii. Hence,
by Eqs. (6) to (9), we get that R[It] is a normal domain if and only if any of the
following two equivalent conditions hold:

(a) NA′ = Zn+1 ∩ R+A′.

(b) Ii = Ii for all i ≥ 1.

If the second condition holds we say that I is a normal ideal.

Proposition 3.5 For 1 ≤ i ≤ r we write ai = (a′i,−1). Let B be the matrix with
column vectors a′1, . . . , a

′
r and let Q = Qn

+ + conv(v1, . . . , vq). Then

(a) Ii = ({xa ∈ R| a ∈ iQ ∩ Zn}).

(b) Q = Q(B) = {x|x ≥ 0; xB ≥ 1}. In particular Q(B) is integral.

Proof. Part (a) follows from Eq. (9) and part (b) follows from Eq. (2). 2

In the sequel J
(dk)
k will denote the ideal of R[It] given by

J
(dk)
k = ({xatb ∈ R[It]| 〈(a, b), `k〉 ≥ dk}) (k = 1, . . . , r)

and Jk will denote the ideal of R[It] given by

Jk = ({xatb ∈ R[It]| 〈(a, b), `k〉 > 0}) (k = 1, . . . , r),

where dk = −〈`k, en+1〉. If dk = 1, we have J
(1)
k = Jk. In general J

(dk)
k might not

be equal to the dkth symbolic power of Jk. The localization of R[It] at R \ pk is
denoted by R[It]pk

.

Proposition 3.6 J1, . . . , Jr are height one prime ideals containing IR[It] and
Jk is equal to pkR[It]pk

∩R[It] for k = 1, . . . , s. If Q(A) is integral, then

rad(IR[It]) = J1 ∩ J2 ∩ · · · ∩ Js.
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Proof. IR[It] is clearly contained in Jk for all k by construction. To show that
Jk is a prime ideal of height one it suffices to notice that the right hand side of
the isomorphism:

R[It]/Jk ' K[{xatb ∈ R[It]| 〈(a, b), `k〉 = 0}]

is an n-dimensional integral domain, because Fk = R+A′ ∩H`k
is a facet of the

Rees cone for all k. Set Pk = pkR[It]pk
∩ R[It] for 1 ≤ k ≤ s. This ideal is a

minimal prime of IR[It] (see [25]) and admits the following description

Pk = pkRpk
[pkRpk

t] ∩R[It]
= pk + (p2

k ∩ I)t + (p3
k ∩ I2)t2 + · · ·+ (pi+1

k ∩ Ii)ti + · · ·

Notice that xa ∈ pb+1
k if and only if 〈a,

∑
xi∈Ck

ei〉 ≥ b + 1. Hence Jk = Pk.
Assume that Q(A) is integral, i.e., r = s. Take xαtb ∈ Jk for all k. Using

Eq. (5) it is not hard to see that (α, b + 1) ∈ R+A′, that is xαtb+1 is in R[It] and
xαtb+1 ∈ Ib+1tb+1. It follows that xαtb is a monomial in the radical of IR[It].
This proves the asserted equality. 2

For use below recall that the analytic spread of I is given by

`(I) = dim R[It]/mR[It]; m = (x1, . . . , xn).

Corollary 3.7 If Q(A) is integral, then `(I) < n.

Proof. Since Q(A) is integral, we have r = s. If `(I) = n, then the height
of mR[It] is equal to 1. Hence there is a height one prime ideal P of R[It]
such that IR[It] ⊂ mR[It] ⊂ P . By Proposition 3.6 the ideal P has the form
pkR[It]pk

∩R[It], this readily yields a contradiction. 2

Theorem 3.8 ([9, 13]) inf{depth(R/Ii)| i ≥ 1} ≤ dim(R) − `(I). If grI(R) is
Cohen-Macaulay, then the equality holds.

By a result of Brodmann [3], the depth of R/Ik is constant for k sufficiently
large. Broadmann improved this inequality by showing that the constant value
is bounded by dim(R)− `(I). For a study of the initial and limit behavior of the
numerical function f(k) = depthR/Ik see [21].

Lemma 3.9 Let x1 ∈ Ck for some 1 ≤ k ≤ s. If xvi = x1x
v′

i for 1 ≤ i ≤ p and
x1 /∈ supp(xvi) for i > p, then there is xv′

j such that supp(xv′
j ) ∩ Ck = ∅.

Proof. If supp(xv′
j ) ∩ Ck 6= ∅ for all j, then Ck \ {x1} is a vertex cover of C, a

contradiction because Ck is a minimal vertex cover. 2

Proposition 3.10 If P ∈ {J1, . . . , Js}, then R[It] ∩ IR[It]P = P .
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Proof. Set P = Jk. We may assume that x1, . . . , xm (resp. xv1t, . . . , xvpt) is the
set of all xi (resp. xvit) such that xi ∈ P (resp. xvit ∈ P ). Notice that pk is
equal to (x1, . . . , xm) and set C = {x1, . . . , xm}. In general the left hand side is
contained in P . To show the reverse inclusion we first prove the equality

P = (x1, . . . , xm, xv1t, . . . , xvpt)R[It]. (10)

Let xatb ∈ P . Thus xatb = xµ1
1 · · ·xµn

n (xv1t)λ1 · · · (xvq t)λq and 〈(a, b), `k〉 > 0.
Hence 〈ei, `k〉 > 0 for some i or 〈(vj , 1), `k〉 > 0 for some j. Therefore xatb

belongs to the right hand side of Eq. (10), as required.
Case (I): Consider x` with 1 ≤ ` ≤ m. By Lemma 3.9 there is j such that

xvj = x`x
α and supp(xα) ∩ C = ∅. Thus since xα is not in P (because of the

second condition) we obtain x` ∈ R[It] ∩ IR[It]P .
Case (II): Consider xv`t with 1 ≤ ` ≤ p. Since

〈(v`, 1), e1 + · · ·+ em − en+1〉 ≥ 1,

the monomial xv` contains at least two variables in C. Thus we may assume that
x1, x2 are in the support of xv` . Again by Lemma 3.9 there are j, j1 such that
xvj = x1x

α, xvj1 = x2x
γ , and the support of xα and xγ disjoint from C. Hence

the monomial xv`xα+γt belongs to I2t and xα+γ is not in P . Writing

xv`t = (xv`xα+γt)/xα+γ ,

we get xv`t ∈ R[It] ∩ IR[It]P . 2

Lemma 3.11 rad(J (dk)
k ) = Jk for 1 ≤ k ≤ r.

Proof. By construction one has rad(J (dk)
k ) ⊂ Jk. The reverse inclusion follows

by noticing that if xatb ∈ Jk, then (xatb)dk ∈ J
(dk)
k . 2

Proposition 3.12 If R[It] is normal, then IR[It] = J
(d1)
1 ∩ · · · ∩ J

(dr)
r .

Proof. “⊂”: Let xatb ∈ IR[It]. Since xa ∈ Ib+1, we obtain (a, b + 1) ∈ NA′. In
particular we get (a, b + 1) ∈ R+A′. Therefore

0 ≤ 〈(a, b + 1), `k〉 = 〈(a, b), `k〉 − dk

and consequently xatb ∈ J (dk) for 1 ≤ k ≤ r.
“⊃”: Let xatb ∈ J (dk) for all k. Since (a, b + 1) ∈ R+A′ ∩ Zn+1, using that

R[It] is normal yields (a, b + 1) ∈ NA′. It follows that xatb ∈ Ib+1tb ⊂ IR[It]. 2

A similar formula is shown in [8]. The normality of R[It] can be described in
terms of primary decompositions of IR[It], see [24, Proposition 2.1.3].
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The following two nice formulas, pointed out to us by Vasconcelos, describe
the difference between the symbolic Rees algebra of I and the normalization of
its Rees algebra. If qk = Jk ∩R for k = 1, . . . , r, then

Rs(I) =
s⋂

k=1

R[It]qk
∩R[t]; R[It] =

r⋂
k=1

R[It]qk
∩R[t].

These representations are linked to the so called Rees valuations of the ideal I,
see [37, Chapter 8] for further details.

Proposition 3.13 The following conditions are equivalent

(a) Q(A) is integral.

(b) R+A′ = H+
e1
∩ · · · ∩H+

en+1
∩H+

`1
∩ · · · ∩H+

`s
, i.e., r = s.

(c) Rs(I) = R[It].

(d) The minimal primes of IR[It] are of the form pkR[It]pk
∩R[It].

Proof. (a) ⇔ (b) ⇔ (c): These implications follow from Theorems 3.1 and 3.4.
The other implications follow readily using Proposition 3.6. 2

Definition 3.14 Let xuk =
∏

xi∈Ck
xi for 1 ≤ k ≤ s. The ideal of vertex covers

of C is the ideal
Ic(C) = (xu1 , . . . , xus) ⊂ R.

The clutter of minimal vertex covers, denoted by D or b(C), is the blocker of C.

In the literature Ic(C) is also called the Alexander dual of I because if ∆
is the Stanley-Reisner complex of I, then Ic(C) is the Stanley-Reisner ideal of
the Alexander dual of ∆. The survey article [20] explains the role of Alexander
duality to prove combinatorial and algebraic theorems.

Example 3.15 Let I = (x1x2x5, x1x3x4, x2x3x6, x4x5x6). The clutter of I is
denoted by Q6. Using Normaliz [7] and Proposition 3.13 we obtain:

R[It] ( Rs(I) = R[It] = R[It][x1 · · ·x6t
2] and R[Ic(Q6)t] = R[Ic(Q6)t].

Proposition 3.16 ([18]) If R[It] = Rs(I) and J = Ic(C), then R[Jt] = Rs(J).

Corollary 3.17 [11, Theorem 1.17] If Q(A) is integral and A′ is the incidence
matrix of the clutter of minimal vertex covers of C, then Q(A′) is integral.

Proof. It follows at once from Propositions 3.13 and 3.16. 2
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Definition 3.18 Let X ′ = {xi1 , . . . , xir , xj1 , . . . , xjs} be a subset of X. A minor
of I is a proper ideal I ′ of R′ = K[X \X ′] obtained from I by making xik = 0
and xj`

= 1 for all k, `. The ideal I is considered itself a minor. A minor of C is
a clutter C′ that corresponds to a minor (0) ( I ′ ( R′.

Notice that C′ is obtained from I ′ by considering the unique set of square-free
monomials of R′ that minimally generate I ′.

Proposition 3.19 If Ii = I(i) for some i ≥ 2 and J = I ′ is a minor of I, then
J i = J (i).

Proof. Assume that J is the minor obtained from I by making x1 = 0. Take
xa ∈ J (i). Then xa ∈ I(i) = Ii because J ⊂ I. Thus xa ∈ Ii. Since x1 /∈ supp(xa)
it follows that xa ∈ J i. This proves J (i) ⊂ J i. The other inclusion is clear because
J (i) is integrally closed.

Assume that J is the minor obtained from I by making x1 = 1. Take xa ∈ J (i).
Notice that xi

1x
a ∈ I(i) = Ii. Indeed if x1 ∈ pk, then xi

1 ∈ pi
k, and if x1 /∈ pk,

then J ⊂ pk and xa ∈ pi
k. Since x1 /∈ supp(xa) it follows that xa ∈ J i. 2

Corollary 3.20 If Rs(I) = R[It], then Rs(I ′) = R′[I ′t] for any minor I ′ of I.

Proposition 3.21 Let D be the clutter of minimal vertex covers of C. If R[It]
is equal to Rs(I) and |A ∩B| ≤ 2 for A ∈ C and B ∈ D, then R[It] is normal.

Proof. Let xatb = xa1
1 · · ·xan

n tb ∈ R[It] be a minimal generator, that is (a, b)
cannot be written as a sum of two non-zero integral vectors in the Rees cone
R+A′. We may assume ai ≥ 1 for 1 ≤ i ≤ m, ai = 0 for i > m, and b ≥ 1.

Case (I): 〈(a, b), `i〉 > 0 for all i. The vector γ = (a, b)− e1 satisfies 〈γ, `i〉 ≥ 0
for all i, that is γ ∈ R+A′. Thus since (a, b) = e1 + γ we derive a contradiction.

Case (II): 〈(a, b), `i〉 = 0 for some i. We may assume

{`i| 〈(a, b), `i〉 = 0} = {`1, . . . , `p}.

Subcase (II.a): ei ∈ H`1 ∩ · · · ∩ H`p for some 1 ≤ i ≤ m. It is not hard to
verify that the vector γ = (a, b)− ei satisfies 〈γ, `k〉 ≥ 0 for all 1 ≤ k ≤ s. Thus
γ ∈ R+A′, a contradiction because (a, b) = ei + γ.

Subcase (II.b): ei /∈ H`1 ∩ · · · ∩H`p for all 1 ≤ i ≤ m. Since the vector (a, b)
belongs to R+A′, it follows (see the proof of Theorem 4.1) that we can write

(a, b) = λ1(v1, 1) + · · ·+ λq(vq, 1) (λi ≥ 0). (11)

By the choice of xatb we may assume 0 < λ1 < 1. Set γ = (a, b) − (v1, 1) and
notice that by Eq. (11) this vector has non-negative entries. We claim that γ is
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in the Rees cone. Since by hypothesis one has 0 ≤ 〈(v1, 1), `j〉 ≤ 1 for all j we
readily obtain

〈γ, `k〉 =
{
〈(a, b), `k〉 − 〈(v1, 1), `k〉 = 0 if 1 ≤ k ≤ p,
〈(a, b), `k〉 − 〈(v1, 1), `k〉 ≥ 0 otherwise.

Thus γ ∈ R+A′ and (a, b) = (v1, 1) + γ. As a result γ = 0 and xatb ∈ R[It], as
desired. 2

4 König property of clutters and normality

Let us introduce a little bit more notation and definitions. Recall that the Ehrhart
ring of the lattice polytope P = conv(v1, . . . , vq) is the subring

A(P ) = K[{xati| a ∈ Zn ∩ iP ; i ∈ N}] ⊂ R[t],

and the homogeneous monomial subring generated by Ft = {xv1t, . . . , xvq t} over
the field K is the subring K[Ft] ⊂ R[t].

Theorem 4.1 If R[It] = Rs(I) and K[Ft] = A(P ), then R[It] is normal.

Proof. Let xatb = xa1
1 · · ·xan

n tb ∈ R[It] be a minimal generator, that is xatb

cannot be written as a product of two non-constant monomials of R[It]. We may
assume ai ≥ 1 for 1 ≤ i ≤ m, ai = 0 for i > m, and b ≥ 1.

Case (I): 〈(a, b), `i〉 > 0 for all i. The vector γ = (a, b)− e1 satisfies 〈γ, `i〉 ≥ 0
for all i, that is γ ∈ R+A′. Thus since x1 and xa1−1

1 xa2
2 · · ·xan

n tb are in R[It] we
get a contradiction. In conclusion this case cannot occur.

Case (II): 〈(a, b), `i〉 = 0 for some i. We may assume

{`i| 〈(a, b), `i〉 = 0} = {`1, . . . , `p}.

Subcase (II.a): ei ∈ H`1 ∩ · · · ∩ H`p for some 1 ≤ i ≤ m. For simplicity of
notation assume i = 1. The vector γ = (a, b)− e1 satisfies

〈γ, `k〉 =
{
〈(a, b), `k〉 − 〈e1, `k〉 = 0 if 1 ≤ k ≤ p,
〈(a, b), `k〉 − 〈e1, `k〉 ≥ 0 otherwise.

Thus γ ∈ R+A′. Proceeding as in Case (I) we derive a contradiction.
Subcase (II.b): ei /∈ H`1∩· · ·∩H`p for all 1 ≤ i ≤ m. The vector (a, b) belongs

to the polyhedral cone

C = H`1 ∩ · · · ∩H`p ∩ R+A′.
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Hence we can write

(a, b) = λ1(v1, 1) + · · ·+ λq(vq, 1) + µ1e1 + · · ·+ µnen (λi;µj ≥ 0),
〈(a, b), `k〉 = λ1〈(v1, 1), `k〉+ · · ·+ λq〈(vq, 1), `k〉+

µ1〈e1, `k〉+ · · ·+ µn〈en, `k〉 = 0

for k = 1, . . . , p. From the first equality we get µi = 0 for i > m because ai = 0
for i > m. If µi > 0 for some 1 ≤ i ≤ m, then 〈ei, `k〉 = 0 for 1 ≤ k ≤ p, a
contradiction. Hence µi = 0 for all i. Therefore a/b ∈ P and a ∈ Zn ∩ bP . This
proves xatb ∈ A(P ) = K[Ft] ⊂ R[It], as desired. 2

Proposition 4.2 ([40]) If `k = dkak has the form

`k = ei1 + · · ·+ eik − dken+1 (1 ≤ i1 < · · · < ik ≤ n)

for k = 1, . . . , r, then A(P )[x1, . . . , xn] = R[It].

Proof. The Ehrhart ring is contained in R[It]. Thus the equality follows using
the proof of Theorem 4.1. 2

Proposition 4.3 If xv1 , . . . , xvq have degree d ≥ 2 and Ib = I(b) for all b, then
Ib is generated by monomials of degree bd for b ≥ 1.

Proof. The monomial ideal Ib has a unique minimal set of generators consisting
of monomials. Take xa in this minimal set. Notice that (a, b) ∈ R+A′. Thus we
may proceed as in the proof of Theorem 4.1 to obtain that (a, b) is in the cone
generated by {(v1, 1), . . . , (vq, 1)}. This yields deg(xa) = bd. 2

Proposition 4.4 If xv1 , . . . , xvq have degree d ≥ 2, then Ii = I(i) for all i ≥ 1 if
and only if Q(A) is integral and K[Ft] = A(P ).

Proof. ⇒) By Proposition 3.13 the polyhedron Q(A) is integral. Since I(i) is
integrally closed [39, Corollary 7.3.15], we get that R[It] is normal. Therefore
applying [14, Theorem 3.15] we obtain K[Ft] = A(P ), here the hypothesis on the
degrees of xvi is essential.

⇐) By Proposition 3.13 Ii = I(i) for all i, thus applying Theorem 4.1 gives
R[It] normal and we get the required equality. Here the hypothesis on the degrees
of xvi is not needed. 2

Definition 4.5 The clutter C satisfies the max-flow min-cut (MFMC) property
if both sides of the LP-duality equation

min{〈α, x〉|x ≥ 0;xA ≥ 1} = max{〈y,1〉| y ≥ 0;Ay ≤ α} (12)

have integral optimum solutions x and y for each non-negative integral vector α.
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It follows from [30, pp. 311-312] that C has the MFMC property if and only if
the maximum in Eq. (12) has an optimal integral solution y for each non-negative
integral vector α. Thus the system x ≥ 0; xA ≥ 1 is TDI if and only if C has the
max-flow min-cut property.

A ring is called reduced if 0 is its only nilpotent element. For convenience
let us state some known characterizations of the reducedness of the associated
graded ring.

Theorem 4.6 ([15, 19, 25]) The following conditions are equivalent

(i) grI(R) is reduced.

(ii) R[It] is normal and Q(A) is an integral polyhedron.

(iii) I is normally torsion free, that is, Ii = I(i) for all i ≥ 1.

(iv) x ≥ 0; xA ≥ 1 is a TDI system.

(iv) C has the max-flow min-cut property.

Corollary 4.7 [12, Theorem 1.3] Let D be the clutter of minimal vertex covers of
C. If Q(A) is integral and |A∩B| ≤ 2 for A ∈ C and B ∈ D, then x ≥ 0; xA ≥ 1
is a TDI system.

Proof. By Proposition 3.21 the Rees algebra R[It] is normal. To complete the
proof apply Theorem 4.6. 2

Lemma 4.8 If I is a monomial ideal of R, then the nilradical of the associated
graded ring of I is given by

nil(grI(R)) = ({xα ∈ Ii/Ii+1|xsα ∈ Isi+1; i ≥ 0; s ≥ 1}).

Proof. The nilradical of grI(R) is graded with respect to the fine grading, and
thus it is generated by homogeneous elements. 2

Definition 4.9 The matrix A is balanced if A has no square submatrix of odd
order with exactly two 1’s in each row and column. A is totally unimodular if
each i× i minor of A is 0 or ±1 for all i ≥ 1.

Proposition 4.10 If A is balanced, then grI(R) is reduced.

Proof. Let xα ∈ Ii/Ii+1 be in nil(grI(R)), that is xsα ∈ Iis+1 for some 0 6= s ∈ N.
By Lemma 4.8 we need only show xα = 0. It follows rapidly that the maximum
in Eq. (1) is greater or equal than i + 1/s. By [30, Theorem 21.8, p. 305] the
maximum in Eq. (1) has an integral optimum solution y = (y1, . . . , yq). Thus
y1 + · · · + yq ≥ i + 1. Since y satisfies y ≥ 0 and Ay ≤ α we obtain xα ∈ Ii+1.
This proves xα = 0, as required. 2

14



Proposition 4.11 If A is balanced and J = Ic(C), then R[Jt] = Rs(J).

Proof. Let D be the blocker of C. By [31, Corollary 83.1a(v), p. 1441], we get
that D satisfy the max-flow min-cut property. Thus the equality follows at once
from Theorem 4.6. 2

Proposition 4.12 If grI(R) is reduced (resp. R[It] is normal) and I ′ is a minor
of I, then grI′(R′) is reduced (resp. R′[I ′t] is normal).

Proof. Notice that we need only show the result when I ′ is a minor obtained
from I by making x1 = 0 or x1 = 1. Using Lemma 4.8 both cases are quite easy
to prove. 2

Definition 4.13 A clutter C satisfies the packing property (PP) if all its minors
satisfy the König property, that is, α0(C′) = β1(C′) for any minor C′ of C.

Corollary 4.14 If the ring grI(R) is reduced, then α0(C′) = β1(C′) for any minor
C′ of C.

Proof. Let C′ be any minor of C and let I ′ be its clutter ideal. We denote
the incidence matrix of C′ by A′. By Proposition 4.12 the associated graded
ring grI′(R′) is reduced. Hence by Theorem 4.6 the clutter C′ has the max-flow
min-cut property. In particular the LP-duality equation

min{〈1, x〉|x ≥ 0;xA′ ≥ 1} = max{〈y,1〉| y ≥ 0;A′y ≤ 1}

has optimum integral solutions x, y. To complete the proof notice that the left
hand side of this equality is α0(C′) and the right hand side is β1(C′). 2

Remark 4.15 If I is the facet ideal of a simplicial tree, then grI(R) is reduced.
This follows from [16, p. 174] using the proof of [32, Corollary 3.2, p. 399]. In
particular C has the König property, this was shown in [17, Theorem 5.3].

Corollary 4.16 If C has the max-flow min-cut property, then C has the packing
property.

Proof. It follows at once from Theorem 4.6 and Corollary 4.14. 2

Conforti and Cornuéjols conjecture that the converse is also true:

Conjecture 4.17 [11, Conjecture 1.6] If the clutter C has the packing property,
then C has the max-flow min-cut property.

Next we state the converse of Corollary 4.14 as an algebraic version of this
interesting conjecture which to our best knowledge is still open:
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Conjecture 4.18 If α0(C′) = β1(C′) for all minors C′ of C, then the ring grI(R)
is reduced.

It is known [11, Theorem 1.8] that clutters with the packing property have
integral set covering polyhedrons. As a consequence, using Theorem 4.6, this
conjecture reduces to the following:

Conjecture 4.19 If α0(C′) = β1(C′) for all minors C′ of C, then R[It] is normal.

In this paper we will give some support for this conjecture using an algebraic
approach.

Proposition 4.20 Let Ji be the ideal obtained from I by making xi = 1. If Q(A)
is an integral polyhedron, then the ideal I is normal if and only if Ji is normal
for all i and depth(R/Ik) ≥ 1 for all k ≥ 1.

Proof. ⇒) The normality of an ideal is closed under minors [15, Proposition 4.3],
hence Ji is normal for all i. Using Theorem 3.8 and Corollary 3.7 we get that
depth(R/Ii) ≥ 1 for all i.

⇐) It follows readily by adapting the arguments given in the proof of the
normality criterion [15, Theorem 4.4]. 2

By Proposition 4.20 we obtain that Conjecture 4.18 also reduces to:

Conjecture 4.21 If α0(C′) = β1(C′) for any minor C′ of C, then

depth(R/Ii) ≥ 1 for all i ≥ 1.

Notation For an integral matrix B 6= (0), the greatest common divisor of all the
nonzero r × r subdeterminants of B will be denoted by ∆r(B).

Corollary 4.22 If xv1 , . . . , xvq are monomials of degree d ≥ 2 such that grI(R)
is reduced and the matrix

B =
(

v1 · · · vq

1 · · · 1

)
has rank r, then ∆r(B) = 1 and B diagonalizes over Z to an identity matrix.

Proof. By Proposition 4.4 we obtain A(P ) = K[Ft]. Hence a direct application
of [14, Theorem 3.9] gives ∆r(B) = 1. 2

This result suggest the following weaker conjecture of Villarreal:

Conjecture 4.23 If α0(C′) = β1(C′) for all minors C′ of C and xv1 , . . . , xvq have
degree d ≥ 2, then ∆r(B) = 1, where r = rank(B).
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Let G be a matroid on X of rank d and let B be the collection of bases of G.
The set of all square-free monomials xi1 · · ·xid ∈ R such that {xi1 , . . . , xid} ∈ B
will be denoted by FG and the subsemigroup (of the multiplicative semigroup of
monomials of R) generated by FG will be denoted by MG. The basis monomial
ring of G is the monomial subring K[FG] = K[MG]. The ideal I(B) = (FG) is
called the basis monomial ideal of G. An open problem in the area is whether
the toric ideal of K[FG] is generated by quadrics, see [43, Conjecture 12]. This
has been shown for graphic matroids [2].

The next result implies the normality of the basis monomial ring of G.

Proposition 4.24 ([42]) If xa is a monomial of degree `d for some ` ∈ N such
that (xa)p ∈ MG for some 0 6= p ∈ N, then xa ∈ MG.

Proposition 4.25 If I = I(B) and B satisfies the packing property, then grI(R)
is reduced.

Proof. First we show the equality A(P ) = K[FGt]. It suffices to prove the
inclusion A(P ) ⊂ K[FGt]. Take xatb ∈ A(P ), i.e., xa ∈ Zn ∩ bP . Hence xa has
degree bd and (xa)p ∈ MG for some positive integer p. By Proposition 4.24 we
get xa ∈ MG. It is seen that xatb is in K[FGt]. Since Q(A) is integral [11], using
Theorem 4.1 we get that R[It] is normal. Thus both conditions yield that grI(R)
is reduced according to Theorem 4.6. 2

This proof can be simplified using that the basis monomial ideal of a matroid
is normal [40].

Corollary 4.26 Let X1, . . . , Xd be a family of disjoint sets of variables and let
M be the transversal matroid whose collection of basis is

C = {{y1, . . . , yd}| yi ∈ Xi ∀ i}.

If I = I(C), then grI(R) is reduced.

The combinatorial equivalencies in the next result are well known [11, 12].
Our contribution here is to link the reducedness of the associated graded ring
with the integrality of Q(A).

Proposition 4.27 If C is a simple graph, then the following are equivalent:

(a) grI(R) is reduced.

(b) C is bipartite.

(c) Q(A) is integral.

(d) C has the packing property.
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Proof. By [32, Theorem 5.9] (a) and (b) are equivalent. Applying Theorem 4.6
and Proposition 3.21 we obtain that (a) is equivalent to (c). By Corollary 4.14
condition (a) implies (d). Finally using [11, Theorem 1.8] we obtain that (d)
implies (c). 2

Corollary 4.28 ([18]) If C is a bipartite graph and J = Ic(C), then grJ(R) is
reduced.

Proof. The matrix A is totally unimodular [30, p. 273], hence Q(A) is integral.
By Proposition 3.16 we get R[Jt] = Rs(J). On the other hand R[Jt] is normal
by Proposition 3.21. Thus by Theorem 4.6 the ring grJ(R) is reduced. 2

Proposition 4.29 If C has the packing property and I = I(C), then I2 = I2.

Proof. By induction on n. Assume I2 6= I2 and consider M = I2/I2. If
p 6= m = (x1, . . . , xn) is a prime ideal of R, then by induction Mp = (0). Thus
m is the only associated prime of M and there is an embedding R/m ↪→ M ,
1 7→ xa, where xa ∈ I2 \ I2 and xix

a ∈ I2 for all i. Notice that by induction all
the entries ai of a are positive. We consider two cases. Assume ai ≥ 2 for some
i, say i = 1. Given a monomial xα, the monomial obtained from xα by making
x1 = 1 is denoted by xα′

. Then making x1 = 1 and using that x1x
a ∈ I2 gives

xa′
= xv′

1xv′
2xδ, hence xa = xa1

1 xa′
= xv1xv2xγ ∈ I2, a contradiction. On the

other hand if ai = 1 for all i, then xa = x1 · · ·xn ∈ Ig ⊂ I2, where g = ht(I), a
contradiction. Therefore I2 = I2. 2

Recall that I is said to be unmixed if all the minimal vertex covers of C have
the same cardinality.

Lemma 4.30 If I is an unmixed ideal and C satisfies the König property, then
x1 = x1x2 · · ·xn belongs to the subring K[xv1 , . . . , xvq ].

Proof. We may assume x1 = xv1 · · ·xvgxδ, where g is the height of I. If δ 6= 0,
pick xn ∈ supp(xδ). Since the variable xn occurs in some monomial of I, there
is a minimal prime p containing xn. Thus using that xv1 , . . . , xvg have disjoint
supports we conclude that p contains at least g + 1 variables, a contradiction. 2

Proposition 4.31 Let Ii = I ∩K[X \ {xi}]. If I is an unmixed ideal such that
the following conditions hold

(a1) Q(A) is integral,

(a2) Ii is normal for i = 1, . . . , n, and

(a3) C has the König property,

then R[It] is normal.
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Proof. Take xatb = xa1
1 · · ·xan

n tb ∈ R[It] a minimal generator. By the second
condition we may assume ai ≥ 1 for all i. Set g = ht(I). Notice that x1 · · ·xntg

is in R[It] because Q(A) is integral, this follows from Corollary 3.3 and Eq. (8).
We claim that b ≤ g. If b > g, consider the decomposition

xatb = (x1 · · ·xntg)(xa1−1
1 · · ·xan−1

n tb−g).

To derive a contradiction consider the irreducible representation of the Rees cone
R+A′ given in Eq. (5). Observe that∑

xi∈Ck
ai ≥ b (k = 1, . . . , s)

because (a, b) ∈ R+A′. Now since I is unmixed we get∑
xi∈Ck

(ai − 1) ≥ b− g (k = 1, . . . , s),

and consequently xa1−1
1 · · ·xan−1

n tb−g ∈ R[It], a contradiction to the choice of
xatb. Thus b ≤ g. Using the third condition we get x1 · · ·xn ∈ Ig ⊂ Ib, which
readily implies xatb ∈ R[It]. 2

According to Corollary 5.9 condition (a3) is redundant when I is generated
by monomials of the same degree.

Proposition 4.32 Let Y ⊂ X and let IY = I ∩ K[Y ]. If IY has the König
property for all Y and R[It] is generated as a K-algebra by monomials of the
form xatb, with xa square-free, then R[It] is normal.

Proof. Take xatb a generator of R[It], with xa square-free. By induction we
may assume xatb = x1 · · ·xntb. Hence, since (1, . . . , 1, b) is in R+A′, we get that
|Ck| ≥ b for k = 1, . . . , s. In particular g = ht(I) ≥ b. As I has the König
property, we get x1 · · ·xn ∈ Ig and consequently xatb ∈ R[It]. 2

Proposition 4.33 Let Ii = I ∩K[X \ {xi}]. If Ii is normal for i = 1, . . . , n and

C = H`1 ∩H`2 ∩ · · · ∩H`r ∩ Rn+1
+ 6= (0), (13)

then R[It] is normal.

Proof. Let xatb = xa1
1 · · ·xan

n tb ∈ R[It] be a minimal generator, that is (a, b),
cannot be written as a sum of two non-zero integral vectors in R+A′. It suffices
to prove that 0 ≤ b ≤ 1 because this readily implies that xa is either a variable or
a monomial in F . Assume b ≥ 2. Since Ii is normal we may assume that ai ≥ 1
for all i. As each variable occurs in at least one monomial of F , using that C
is contained in R+A′ together with Eq. (13), it follows that there is (vk, 1) such
that 〈(vk, 1), `i〉 = 0 for i = 1, . . . , r. Therefore

〈(a− vk, b− 1), `i〉 ≥ 0 (i = 1, . . . , r).

Thus (a, b)− (vk, 1) ∈ R+A′, a contradiction to the choice of xatb. 2
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5 Some applications to Rees algebras and clutters

Throughout this section we assume deg(xvi) = d ≥ 2 for all i. By assigning
deg(xi) = 1 and deg(t) = −(d − 1), the Rees algebra R[It] becomes a standard
graded K-algebra, i.e., it is generated by elements of degree 1. The a-invariant
of R[It], with respect to this grading, is denoted by a(R[It]). If R[It] is a normal
domain, then according to a formula of Danilov-Stanley [6, Theorem 6.3.5] its
canonical module is the ideal of R[It] given by

ωR[It] = ({xa1
1 · · ·xan

n tan+1 | a = (ai) ∈ (R+A′)o ∩ Zn+1}),

where (R+A′)o is the topological interior of the Rees cone.

Theorem 5.1 If grI(R) is reduced, then

a(R[It]) ≥ − [n− (d− 1)(α0(C)− 1)] ,

with equality if I is unmixed.

Proof. It is well known (see [6]) that the a-invariant can be expressed as

a(R[It]) = −min{ i | (ωR[It])i 6= 0}.

Set α0 = α0(C). Using Eq. (5) it is seen that the vector (1, . . . , 1, α0−1) is in the
interior of the Rees cone. Thus the inequality follows by computing the degree
of x1 · · ·xntα0−1.

Assume that I is unmixed. Take an arbitrary monomial xatb = xa1
1 · · ·xan

n tb

in the ideal ωR[It], that is, (a, b) ∈ (R+A′)o. By Proposition 3.13 the vector (a, b)
has positive entries and satisfies

−b +
∑

xi∈Ck
ai ≥ 1 (k = 1, . . . , s). (14)

If α0 ≥ b + 1, we obtain the inequality

deg(xatb) = a1 + · · ·+ an − b(d− 1) ≥ n− (d− 1)(α0 − 1). (15)

Now assume α0 ≤ b. Using the normality of R[It] and Eqs. (5) and (14) it follows
that the monomial

m = xa1−1
1 · · ·xan−1

n tb−α0+1

belongs to R[It]. Since xatb = mx1 · · ·xntα0−1, the inequality (15) also holds in
this case. Altogether we conclude the desired equality. 2

Corollary 5.2 ([18]) If I is unmixed with α0(C) = 2 and grI(R) is reduced,
then R[It] is a Gorenstein ring and

a(R[It]) = −(n− d + 1).
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Proof. From the proof of Theorem 5.1 it follows that x1 · · ·xnt generates the
canonical module. 2

Notice that if α0(C) ≥ 3, then R[It] is not Gorenstein because the monomials
x1 · · ·xntα0−1 and x1 · · ·xnt are distinct minimal generators of ωR[It]. This holds
in a more general setting (see Proposition 5.5 below).

Corollary 5.3 Let J = Ic(C) be the ideal of vertex covers of C. If C is a bipartite
graph and I = I(C) is unmixed, then R[Jt] is a Gorenstein ring and

a(R[Jt]) = −(n− α0(C) + 1).

Proof. Notice that R[Jt] has the grading induced by assigning deg(xi) = 1 and
deg(t) = 1 − α0(C). Thus the formula follows from Corollary 5.2 once we recall
that grJ(R) is a reduced ring according to Corollary 4.28. 2

Lemma 5.4 ([5], [35, p. 142]) If S is a regular local ring and J is an ideal of S
generated by a regular sequence h1, ..., hg, then S[Jt] is determinantal:

S[Jt] ' S[z1, . . . , zg]/I2

(
z1 · · · zg

h1 · · · hg

)
and its canonical module is ωS(1, t)g−2.

Proposition 5.5 If I has height g ≥ 2 and S = R[It] is Gorenstein, then g = 2.

Proof. Since Ip is a complete intersection for all associated prime ideals p of I
and S is Gorenstein one has ωS ' ωR(1, t)g−2 [23]. Then

S ' ωS ' ωR(1, t)g−2 = R⊕Rt⊕ · · · ⊕Rtg−2 ⊕ Itg−1 ⊕ · · · (16)

Take a minimal prime p of I of height g. Then Sp = Rp[Ipt] is the Rees algebra
of the ideal Ip, which is generated by a regular sequence. Thus localizing the
extremes of Eq. (16) at p and using Lemma 5.4 we obtain

Sp = Rp[Ipt] ' ωRp(1, t)g−2 ' ωSp .

Note that it is important to know a priori that the canonical module of Sp is
ωRp(1, t)g−2. Hence Sp is Gorenstein. To finish the proof note that the only
Gorenstein determinantal rings that occur in Lemma 5.4 are those with g = 2.
Here the hypothesis on the degrees of xvi is not needed. 2

Lemma 5.6 If R[It] = Rs(I), then there is a minimal vertex cover Ck of C such
that |supp(xvi) ∩ Ck| = 1 for i = 1, . . . , q.
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Proof. We claim that Jk = pkR[It] for some 1 ≤ k ≤ s. If not, using Eq. (10),
we can pick xvkt ∈ Jk for k = 1, . . . , s. Then by Proposition 3.6 the product of
these monomials is in the radical of IR[It]. Therefore

[(xv1t) · · · (xvst)]p ∈ IR[It]

for some 0 6= p ∈ N. Thus (xv1 · · ·xvs)p ∈ Isp+1. By degree considerations, using
that deg(xvi) = d for all i, one readily derives a contradiction. This proves the
claim. Hence 〈(vi, 1), `k〉 = 0 for all i and v1, . . . , vq lie on the hyperplane∑

xi∈Ck
xi = 1.

Therefore |supp(xvi) ∩ Ck| = 1 for all i, as desired. 2

Proposition 5.7 If R[It] = Rs(I) and I is unmixed, then

H`1 ∩H`2 ∩ · · · ∩H`r ∩ Rn+1
+ 6= (0).

Proof. Let J = Ic(C) be the Alexander dual of I. Using Proposition 3.16 one
has R[Jt] = Rs(J). Thus by Lemma 5.6 there is vk such that |supp(xvk)∩Ci| = 1
for i = 1, . . . , r. This means that (vk, 1) is in the intersection of H`1 , . . . ,H`r . 2

Proposition 5.8 If R[It] = Rs(I), then there are C1, . . . , Cd mutually disjoint
minimal vertex covers of C such that ∪q

i=1supp(xvi) = ∪d
i=1Ci and

|supp(xvi) ∩ Ck| = 1 ∀ i, k.

Proof. By induction on d. By Lemma 5.6 there is a minimal vertex cover C1 of
C such that |supp(xvi) ∩ C1| = 1 for all i. Consider the ideal I ′ obtained from I
by making xi = 1 for all xi ∈ C1. Then I ′ is an ideal generated by monomials of
degree d− 1 and R[I ′t] = Rs(I ′) by Corollary 3.20. Thus we can apply induction
to get the required assertion. 2

Corollary 5.9 If I is unmixed and R[It] = Rs(I), then both C and the clutter
D of minimal vertex covers of C have the König property.

Proof. That D has the König property follows from Proposition 5.8, because
α0(D) = d and C1, . . . , Cd are independent edges of D. Now Ic(C) is unmixed, is
generated by monomials of degree α0(C), and according to Proposition 3.16 one
has R[Ic(C)] = Rs(Ic(C)). Thus, using again Proposition 5.8, we conclude that C
has the König property. 2

Combining Corollary 5.9 with Proposition 4.31 we obtain:

Theorem 5.10 Let Ii = I ∩K[X \ {xi}]. If I is unmixed and Q(A) is integral,
then grI(R) is reduced if and only if Ii is normal for i = 1, . . . , n.
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