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Centro de Investigación y de Estudios Avanzados del IPN

Apartado Postal 14–740
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Abstract

A combinatorial design is equivalent to a stable set in a suitably chosen Johnson
graph, whose vertices correspond to all k-sets that could be blocks of the design. In
order to find maximum stable sets of a graph G, two ideals are associated with G,
one constructed from the Motzkin-Strauss formula and one reported by Lovász in
connection with the stability polytope. These ideals are shown to coincide and form
the stability ideal of G. Graph stability ideals belong to a class of 0-1 ideals. These
ideals are shown to be radical, and therefore have a strong structure.

Stability ideals of Johnson graphs provide an algebraic characterization that can
be used to generate Steiner triple systems. Two different ideals for the generation of
Steiner triple systems, and a third for Kirkman triple systems, are developed. The last
of these combines stability and colorings.

1 Introduction

Our main objective is to establish links between design theory and algebraic geometry
through the use of ideals and Gröbner bases. We concentrate on Steiner triple systems
because they are simple designs with well known properties; however, the algebraic geome-
try techniques that we use can be easily translated to other designs.

0Key words and phrases. Computational Algebraic Geometry, Göbner basis, Combinatorial Designs,
Steiner Triple Systems, 0-1 Ideals.

1Partially supported by SNI under contract number 7008.
2Partially supported by DOD grant N00014-08-1-1069.

1



Let us start defining the fundamental objects and concepts from design theory, graph
theory and algebraic geometry with which we work. A maximum packing by triples (MPT
or MPT(n)) of order n > 0 is maximum cardinality set of triples in {0, . . . , n− 1} such that
every pair i, j ∈ {0, . . . , n− 1} is in at most one triple. MPTs exist for every n ≥ 3. When
n ≡ 1, 3 (mod 6), an MPT(n) is a Steiner triple system (STS or STS(n)); in this case, every
2-subset of elements appears in exactly one triple.

All graphs considered here are simple. Let v, `, and i be fixed positive integers, with
v ≥ ` ≥ i. Let Ω be a cardinality v set. Define a graph J(v, `, i) as follows. The vertices
of J(v, `, i) are the `-subsets of Ω, two `-subsets being adjacent if their intersection has
cardinality i. Therefore, J(v, `, i) has

(
v
`

)
vertices and it is a regular graph with valency(

`
i

)(
v−`
`−i

)
. For v ≥ 2`, graphs J(v, `, `− 1) are Johnson graphs [10].

One of the main methods that we use to characterize MPT(n)s consists of finding stable
sets (or independent sets) in J(n, 3, 2). A stable set S of a graph G is a subset of vertices in
V (G) containing no pair of adjacent vertices in G. The maximum size of a stable set in G
is the stability number of G, denoted by α(G).

The stability polytope of a n-vertex graph G is the convex hull of {(x0, . . . , xn−1)|xi =
1 or xi = 0 and {i ∈ V (G)|xi = 1} is a stable set of G}.

We also use vertex colorings. A λ vertex coloring (or coloring for short) of a graph G
(where λ is a positive integer) is a function c : V (G) → {1, . . . , λ} such that (v, w) ∈ E(G)
if and only if c(v) 6= c(w). The minimum value of λ for which a λ coloring of G exists is the
chromatic number of G, denoted by χ(G).

We introduce some algebraic structures. For k a field, k[x] = k[x1, . . . , xn] is the polyno-
mial ring in n variables. A subset I ⊂ k[x1, . . . , xn] is an ideal of k[x1, . . . , xn] if it satisfies
0 ∈ I; if f, g ∈ I, then f + g ∈ I; and if f ∈ I and h ∈ k[x1, . . . , xn] then hf ∈ I. When
f1, . . . , fs are polynomials in k[x1, . . . , xn] we set

〈f1, . . . , fs〉 =

{
s∑
i=1

hifi

∣∣∣∣h1, . . . , hs ∈ k[x1, . . . , xn]

}
.

Then 〈f1, . . . , fs〉 is an ideal (see [6]) of k[x1, . . . , xn], the ideal generated by f1, . . . , fs.
One remarkable result, the Hilbert Basis Theorem (see [6]), establishes that every ideal
I ⊂ k[x1, . . . , xn] has a finite generating set.

The monomials in k[x] are denoted by xa = xa1
1 x

a2
2 · · ·xann ; they are identified with lattice

points a = (a1, . . . , an) in Nn, where N is the set of nonnegative integers. A total order ≺
on Nn is a term order if the zero vector is the unique minimal element, and a ≺ b implies
a + c ≺ b + c for all a,b, c ∈ Nn.

Given a term order ≺, every nonzero polynomial f ∈ k[x] has a unique initial monomial,
denoted by in≺(f). If I is an ideal in k[x], then its initial ideal is the monomial ideal
in≺(I) := 〈in≺(f) : f ∈ I〉.

The monomials that do not lie in in≺(I) are standard monomials. A finite subset G ⊂ I
is a Gröbner basis for I with respect to ≺ if in≺(I) is generated by {in≺(g) : g ∈ G}. If no
monomial in this set is redundant, the Gröbner basis is unique for I and ≺, provided that
the coefficient of in≺(g) in g is 1 for each g ∈ G.
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A finite subset U ⊂ I is a universal Gröbner basis if U is a Gröbner basis of I with
respect to all term orders ≺ simultaneously.

A field k is algebraically closed if for every polynomial f ∈ k[x] in one variable, the
equation f(x) = 0 has a solution in k. Every field k is contained in a field k̄ that is
algebraically closed and such that every element of k̄ is the root of a nonzero polynomial
in one variable with coefficients in k. This field is unique up to isomorphism, and is the
algebraic closure of k.

Given a subset S ⊆ k[x1, . . . , xn], the variety Vk̄(S) in k̄n is

Vk̄(I) = {(a1, . . . , an) ∈ k̄n | f(a1, . . . , an) = 0 for all f ∈ S}.

If I = 〈f1, . . . , fs〉 ⊆ k[x1, . . . , xn] then

Vk̄(I) = {(a1, . . . , an) ∈ k̄n | fi(a1, . . . , an) = 0, 1 ≤ i ≤ s} = Vk̄(f1, . . . , fs).

One of the most remarkable results in algebraic geometry is the following.

Theorem 1.1 (Weak Hilbert Nullstellensatz (see [11])) Let I be an ideal contained in
k[x1, . . . , xn]. Then Vk̄(I) = ∅ if and only if I = k[x1, . . . , xn]

We may use this theorem to demonstrate that some designs do not exist, by proving that
they correspond to varieties of ideals whose reduced Gröbner basis is {1}, or equivalently
that I = k[x1, . . . , xn] and, by the weak Hilbert Nullstellensatz, the variety is empty.

These are the fundamental objects employed, and more specific definitions are introduced
as needed. With the exception of the ideals introduced in Section 7, we use the field of
rational numbers. When an algebraic closed field is needed, the complex numbers are used
instead. Computations for Gröbner basis ideals are done in Macaulay 2 [8].

The paper is organized as follows. In Section 2 an ideal to generate stable sets based
on the Motzkin-Strauss formula [15] is first introduced. Then a general ideal introduced
by Lovász [14], which has been extensively used for the generation of stable sets in graphs,
is described. Both ideals are examples of 0-1 ideals, a recently introduced class having
combinatorial applications beyond stability (see [18]). These ideals are shown to be radical,
and consequently the equality of the two ideals is established. Section 3 introduces basic
properties of stability ideals. In Section 4 the stability ideal of J(n, 3, 2) is determined and
used to build MPTs; difficulties to solve the equations involved are explored, and potential
means to generate MPTs with restrictions are examined. In particular a modification of the
stability ideal of J(n, 3, 2) is shown to generate anti-Pasch MPTs. Section 5 introduces two
new ideals to generate MPTs that use colorings instead of stable sets. Section 6 introduces
an ideal to generate Kirkman triple systems that employs a mixture of techniques based on
stable sets and on colorings. Section 7 explores parametric generation of MPTs. Finally, in
section 8 some concluding remarks are made.
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2 Stable sets and ideals

Combinatorial and algebraic aspects of the stable set problem have been extensively studied.
One of the most interesting connections is given by the Motzkin-Strauss explicit formula for
α(G) (see [15]):

Theorem 2.1 Let G = (V,E) be a graph. Then

1− 1

α(G)
= max

2
∑
i,j /∈E

xixj

∣∣∣∣ ∑
i∈V (G)

xi = 1, xi ≥ 0

 . (1)

The Motzkin-Strauss formula enables one to determine part of the structure of the stabil-
ity polytope, and consequently to prove several results in extremal graph theory, including
Turán’s Theorem. In (1), α(G) is determined by an optimization problem which at first
sight might be solved by Lagrange multipliers. Unfortunately the objective function reaches
its maximum at the feasible region boundary and out of this region it is unbounded. We can
circumvent this problem by squaring each variable to get a different version of the Motzkin-
Strauss formula that still yields α(G):

1− 1

α(G)
= max

2
∑
i,j /∈E

y2
i y

2
j

∣∣∣∣ ∑
i∈V (G)

y2
i = 1

 . (2)

Lagrange multipliers can be used for (2). Make the objective function’s gradient equal
to a multiplier λ times the restriction function’s gradient to obtain the system of equations:

4yi
∑

j∈V (G)|i,j /∈E

y2
j = 2λyi for each i ∈ V (G), (3)

∑
i∈V (G)

y2
i = 1.

This system has several solutions that do not maximize (2). Lovász [14] characterizes the
set of maximum solutions for (1): Any vector x maximizes the right hand side if and only if
x has a stable set as support and if xi 6= 0 for some i ∈ V (G) then xi = 1/α(G). Let y be
an optimal solution to (2) such that yj ≥ 0 for every j ∈ V (G). From (3), if yi 6= 0 then

4
α(G)− 1

α(G)
√
α(G)

= 4
1√
α(G)

α(G)− 1

α(G)
= 4yi

∑
j∈V (G)|i,j /∈E

y2
j = 2λyi = 2λ

1√
α(G)

So, a solution of (3) is a maximum of the objective function in (2) if and only if

λ = 2α(G)−1
α(G)

. If we substitute this value in (3), substitute zi = y2
i α(G), and introduce

the equations zi(zi − 1) = 0 to restrict the values of zi to 0 or 1, then we transform (3) into
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zi(zi − 1) = 0 for each i ∈ V (G), (4)

zi(
∑

j∈V (G)|i,j /∈E

zj − α(G) + 1) = 0 for each i ∈ V (G),

∑
i∈V (G)

zi − α(G) = 0.

This yields:

Proposition 2.2 The graph G has stability number at least e if and only if the following
zero-dimensional system of equations

x2
i − xi = 0 for every node i ∈ V (G), (5)

xi(
∑

j∈V (G)|i,j /∈E

xj − e+ 1) = 0 for each i ∈ V (G),

n∑
i=1

xi − e = 0,

has a solution. The vector x is a solution of (5) if and only if the support of x is a stable
set.

The ideal generated by the polynomials in (5) is the Motzkin-Strauss ideal of G, denoted
by MS(G).

A second approach was introduced by Lovász [14].

Proposition 2.3 (Lovász) The graph G has stability number at least e if and only if the
zero-dimensional system of equations

x2
i − xi = 0 for every node i ∈ V (G), (6)

xixj = 0 for every edge {i, j} ∈ E(G),
n∑
i=1

xi − e = 0,

has a solution. Vector x is a solution of (6) if and only if the support of x is a stable set.

Proof: If there exists some solution x to these equations, the identities x2
i−xi = 0 ensure that

all variables take values only in {0, 1}. The set S = {i|xi = 1} is stable because equations
xixj = 0 guarantee that the end points of any edge in E(G) cannot belong simultaneously
to S. Finally the cardinality of S is e by the last equation.

The ideal generated by the polynomials in (6) is the stability ideal of G, denoted by
S(G). As Lovász [14] explains, solving (6) appears to be hopeless but he uses S(G) to write
alternative proofs of several known restrictions on the stability polytope.
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A quick comparison of S(G) and MS(G) demonstrates that the ideals are close; actually
their generators only differ in the polynomials defined in terms of E(G). However the
generators of both ideals contain the polynomials x2

i − xi for i ∈ V (G). This condition
confers on them a strong structure that we can generalize by introducing a bigger class of
ideals containing them.

Let I be an ideal in k[x1, x2, . . . , xn]. Then I is a 0-1 ideal if {x2
1−x1, x

2
2−x2, . . . , x

2
n−xn} ⊂

I. Ideals S(G) and MS(G) are 0-1 ideals. Our objective now is to prove that 0-1 ideals are
radical, with the consequence that the Motzkin-Strauss and stability ideals are the same for
any graph G.

For a polynomial f ∈ k[x1, . . . , xn] write f = pv11 p
v2
2 · · · pvmm where the polynomials

pv11 p
v2
2 · · · pvmm are irreducible. Polynomial f ∗ = p1p2 · · · pm is the square free part of f . Poly-

nomial f is square free if and only if f = f ∗.
If M is an additive group, for a natural number n and an element a of M , na denotes

the n-ple sum a + · · · + a of a (the addition of a, n times). Under the notation, we define
the characteristic of a ring k, denoted chart(k) as follows. Considerer the set D = {n ∈
N|na = 0 for every a ∈ k}. If D is empty, then the characteristic of k is defined to be zero,
otherwise, the least number in D is defined to be the characteristic of k. The next result is
due to A. Seidenberg.

Theorem 2.4 [17] Let chart(k)=0 and let I be a zero-dimensional ideal of k[x1, . . . , xn].
Assume that for each i = 1, . . . , n, I contains a square free polynomial gi ∈ k[xi]. Then
I =
√
I.

Proposition 2.5 [1] Let I be a zero-dimensional ideal and G be the reduced Gröbner basis
for I with respect to the lex term order with x1 < x2 < · · · < xn. Then we can order g1, . . . , gt
such that g1 contains only the variable x1, g2 contains only the variables x1 and x2 and lp(g2)
is a power of x2, g3 contains only the variables x1, x2 and x3 and lp(g3) is a power of x3,
and so forth until gn.

Here lp(g) stands for the leader power of the polynomial g.

Theorem 2.6 Every 0-1 ideal I in C[x1, . . . , xn] is a radical ideal.

Proof: Let G be the reduced Gröbner basis for I. If 1 ∈ G, by Theorem 1.1 I = k[x1, . . . , xn]
and hence I =

√
I. Now we consider the case when I is zero-dimensional, since chart(C) = 0

and for each i = 1, . . . , n, I contains the polynomial x2
i − xi which is square free, the result

follows from Theorem 2.4.

Theorem 2.7 (Strong Hilbert Nullstellensatz) I(Vk̄(I)) =
√
I for all ideals I of

k[x1, . . . , xn].

As a consequence, two ideals I and J correspond to the same variety (Vk̄(I) = Vk̄(J)) if and
only if

√
I =
√
J .
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Proposition 2.8 For G a graph, S(G) = MS(G).

Proof: By Lemma 2.6 S(G) and MS(G) are both radical. By Propositions 2.2 and 2.3 these
two ideals correspond to the same variety. Finally by Theorem 2.7, both ideals coincide.

This gives two names and two ways to designate the same ideal, so henceforth the ter-
minology of stability ideal and S(G) is used. All extremal graph theory results implied from
the Motzkin-Strauss formula and those about the stability polytope can be established now
from S(G). This is one reason why S(G) is important. The relevance of 0-1 ideals goes
beyond stability. They help to solve problems like finding hamiltonian cycles in graphs and
other combinatorial problems. A detailed presentation appears in [18].

3 Stability ideal and Gröbner basis

In this section we study basic properties of the stability ideal of a graph G from the point
of view of its Gröbner basis. In an implicit way we use S-polynomials and Buchberger’s
algorithm for the calculation of reduced Gröbner basis; see [1] for details. The S-polynomial
of two polynomials f and g in k[x1, . . . , xn], denoted S(f, g), is the polynomial S(f, g) =
lcm(in≺(f),in≺(g))

in≺(g)
· f − lcm(in≺(f),in≺(g))

in≺(g)
· g. The lcm is the least common multiple in relation to

the monomial order ≺.
We separate the generators of S(G) into sets of polynomials P1(G) and P2(G):

P1(G) = {x2
i − xi|i ∈ V (G)}

⋃
{xixj|i, j ∈ E(G)} (7)

P2(G) = {
∑

i∈V (G)

xi − e} (8)

Proposition 3.1 Let G be a graph. Then P1(G) is the reduced Gröbner basis of 〈P1(G)〉
with respect to any monomial order.

Proof: Buchberger’s algorithm starts with P1(G) as initial basis.
For every i, j, k, ` ∈ V (G) with i 6= j and k 6= `, S(xixj, x`xk) = 0. If i 6= j then

S(x2
i − xi, xixj) = −xixj. If i, j and k are pairwise different S(x2

i − xi, xjxk) = −xixjxk.
Finally, if i 6= j then S(x2

i −xi, x2
j−xj) = −xi(x2

j−xj). No new polynomial should be added
into the basis because any possible S-polynomial is zero or reduced to zero with respect
to P1(G). We conclude that P1(G) is a reduced Gröbner basis. The monomial order is
irrelevant.

Corollary 3.2 For any G the set P1(G) is an universal Gröbner basis of 〈P1(G)〉.

This fact is a direct consequence of the following result [12].
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Lemma 3.3 Let F = {f1, f2, . . . , fk} be a set of polynomials in k[x1, . . . , xn]such that poly-
nomial fi is a product of linear factors and for any permutation π of {1, . . . , n} we have
π(fi(x1, . . . , xn)) = fi(xπ(1), . . . , xπ(n)) ∈ F . If F is a Gröbner basis for the ideal 〈F 〉 with
respect to the lexicographic monomial order induced by x1 > x2 > · · · > xn then F is a
universal Gröbner basis for the ideal 〈F 〉.

The set of polynomials P1(G) is the reduced Gröbner basis of 〈P1(G)〉 and P2(G) is the
reduced Gröbner basis of 〈P2(G)〉; actually both of them are universal, but when we try
to calculate the Gröbner basis of S(G) = 〈P1(G)

⋃
P2(G)〉, the number of S-polynomials

calculated by Buchberger’s algorithm increases exponentially. Proposition 3.4 explains this
behavior.

Proposition 3.4 The Gröbner basis of S(G) with respect to the term order e < x0 < x1 <
· · · < x|V |−1 contains the polynomial e(e− 1)(e− 2) . . . (e− α(G)).

Proof: By Proposition 2.5 there exists a polynomial g1 in the reduced Gröbner basis of
S(G) such that g1 is the generator of S(G) ∩ k[e]. Since e represents the size of the stable
set this variable can be assigned to one of the values 0, 1, . . . , α(G). Note that g1(i) =
0 when i ∈ {0, 1, . . . , α(G)} and g1(i) 6= 0 when i /∈ {0, 1, . . . , α(G)}. The polynomial
e(e − 1)(e − 2) . . . (e − α(G)) has minimum degree and roots 0, 1, ... . . . α(G). Thus g1 =
e(e− 1)(e− 2) . . . (e− α(G)).

If we calculate a Gröbner basis for S(G), in an implicit way we are calculating α(G):
Look for the polynomial in the basis that only contains the variable e. This polynomial has
degree α(G) + 1. Because the calculation of the stability number of a graph is NP-hard,
unless P = NP , we cannot expect a polynomial time method to generate the Gröbner basis
of S(G). However we can use this ideal to do direct deductions related to stability.

4 Stability ideal for J(n, 3, 2) and MPTs

Maximum size stable sets in J(n, 3, 2) correspond to MPT(n)s. In this section we construct
the generators of S(J(n, 3, 2)) and discuss some properties of this ideal and its Gröbner basis.

Let n > 3 be an integer, and let A be a 4-set contained in Ω = {0, . . . , n− 1}. Any pair
of triples in A is an edge in J(n, 3, 2). In other words, the subgraph of J(n, 3, 2) induced by
the triples contained in A is isomorphic to K4. We denote this subgraph by KA.

Proposition 4.1 Let n be a positive integer. The family {E(KA)}A is a 4-set in Ω is a

partition of E(J(n, 3, 2)).

Proof: Let e be an arbitrary edge in E(J(n, 3, 2)), e = ({w0, w1, w2}, {w0, w1, w3}) for
some w0, w1, w2 and w3 which are pairwise different elements in Ω. Then e belongs to
E(K{w0,w1,w2,w3}) and E(J(n, 3, 2)) ⊆ ∪A∈{4-sets in Ω}E(KA).

Let A be a 4-set contained in Ω and let e be an edge of KA. There are two different
triples A1 and A2 contained in A such that e = (A1, A2). We have that 4 = |A1 ∪ A2| =
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|A1| + |A2| − |A1 ∩ A2| and thus |A1 ∩ A2| = 2 or equivalently e ∈ E(J(n, 3, 2)). Thus
E(KA) ⊆ E(J(n, 3, 2)).

Finally, let B1 and B2 be different 4-sets contained in Ω, then E(KB1) ∩ E(KB2) = ∅.
Suppose to the contrary that there is an edge e in the intersection of both sets. Let A1 and
A2 be triples in Ω such that e = (A1, A2), then A1∪A2 = B1 given that e ∈ E(KB1), but A1∪
A2 = B2 because e ∈ E(KB2), but that is a contradiction. Thus {E(KA)}A is a 4-set in Ω is
a partition of E(B(n)).

We can use this proposition to construct the generators of S(J(n, 3, 2)).

Corollary 4.2 Let n ≥ 4 be a positive integer. Then

P1(J(n, 3, 2)) = {x2
A − xA|A ⊆ {0, . . . , n− 1} and |A| = 3}

⋃
(9)

{xAxB|A,B ⊆ {0, . . . , n− 1}, |A| = |B| = 3 and |A ∪B| = 4}
P2(J(n, 3, 2)) = {

∑
A⊆Triples({0,...,n−1})

xA − e}.

The ideal generated by the polynomials in (9) is the stability Steiner ideal of order n. We
have an algorithmic approach for its construction.

Algorithm 4.1 Construction of the generators of S(J(n, 3, 2))

Input: An integer n ≥ 4.

Output: The set P of polynomials generating S(J(n, 3, 2)).

Method:
1. P← ∅ 9. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[2],a[3]}}
2. f ← 0 10. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[1],a[3]}}
3. for i← 1 to

(
n
3

)
11. P ← P ∪ {x{a[1],a[2],a[3]}x{a[0],a[1],a[2]}}

4. a ← combination(n, 3, i) 12. P ← P ∪ {x{a[0],a[2],a[3]}x{a[0],a[1],a[3]}}
5. P ← P ∪ {x2

{a[0],a[1],a[2]} − x{a[0],a[1],a[2]}} 13. P ← P ∪ {x{a[0],a[2],a[3]}x{a[0],a[1],a[2]}}
6. f ← f + x{a[0],a[1],a[2]} 14. P ← P ∪ {x{a[0],a[1],a[3]}x{a[0],a[1],a[2]}}
7. for i← 1 to

(
n
4

)
15. P ← {f − e}

8. a ← combination(n, 4, i) 16. return P

Here “combination(n, k, i)” generates (in some order) the i-th k-set contained in Ω.
The complexity of Gröbner basis computation depends strongly on the term ordering.

The best one is reported to be degree-reverse-lexicographical [1]; for this ordering, the compu-
tation of the Gröbner basis of the system of polynomial equations of degree d in n variables
is polynomial in dn

2
if the number of solutions is finite (see [3, 4]). The time needed to

compute an MPT(n) is therefore polynomial in 2n
2
. Indeed this suffices to find all possi-

ble MPT(n)s. However when n is small enough we can hope to do successful calculations
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to prove in “an automatic way” (through the Nullstelensatz Hilbert Theorem) conjectures
about MPTs satisfying specific conditions.

We implemented this method in Macaulay 2. We adopted some heuristics, described
next, that make the program faster, and use less memory, to allow the computation for
larger values of n.

1. Substitute the variable e in the generating set of S(J(n, 3, 2) by the constant value of
α(J(n, 3, 2)) in order to simplify computation. See [3, 4].

2. Always make the polynomials homogenous. Use reverse degree-reverse-lexicographical
monomial order [1].

3. Restrict the MPTs to be generated. There is no lost of generality if we assume that the
MPTs contain the triples {0, 1, 2}, {0, 3, 4}, {0, 5, 6}, . . . , {0, n− 2, n− 1} and {1, 3, 5}
(assuming that n is odd). Of course, we are not working with S(J(n, 3, 2)) anymore,
but we omit only systems isomorphic to those found. To enforce the presence of these
triples, include in the generators the polynomials x{0,1,2}−1, x{0,3,4}−1, . . . , x{1,3,5}−1.
Some further pruning can be done if we consider the combined presence of other triples,
for example, the pair {2, 3} could belong without loss of generality only to the triple
{2, 3, 6} or to the triple {2, 3, 7}. To do this, adjoin to the generator set the polynomial
x{2,3,6}+ x{2,3,7}− 1. We can continue with this process as desired to make the process
faster and reduce the number of resulting MPTs. Taking this process to the extreme
yields a full enumeration of the nonisomorphic MPTs.

4. Impose further restrictions when possible. For example, to build an anti-Pasch MPT
(one not containing a copy of the MPT(6)), let a be an array containing a 6-subset
of {0, . . . , n − 1}. Including x{a[3],a[4],a[5]}x{a[1],a[2],a[5]}x{a[0],a[2],a[4]}x{a[0],a[1],a[3]} with the
generators of S(J(n, 3, 2)) prevents the Pasch

{a[3], a[4], a[5]}, {a[1], a[2], a[5]}, {a[0], a[2], a[4]}, {a[0], a[1], a[3]}

from appearing in the MPTs. The other 23 monomials of this form must be included
for the 6-set in a. A total of

(
n
6

)
24 monomials must be included in order to ensure that

the MPTs generated are anti-Pasch.

Despite these heuristics, computation is far too time-consuming. Being optimistic, with
a supercomputer and these heuristics, we may reach values of n as big as 21. Bigger values
appear to be hopeless at present.

This time consumed by this method is not very different from brute force algorithms.
Why we would prefer to use the stability ideal and a program such as Macaulay 2? The
answer is simple: Some conjecture is false when the number one enters the Gröbner basis.
Macaulay 2 can in principle produce the sequence of calculations involved. The reductions
and computations of S-polynomials involved is a formal deduction, while with brute force
algorithms additional work is required to get a mathematical proof. On the other hand,
when a conjecture is true, the Gröbner basis calculation provides a full description of the
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associated geometric variety. Moreover, the strong structure of the ideals, if understood
well, may permit direct inferences without using the Buchberger algorithm. Sturmfels [19]
used a similar development on polytopes in combinatorial optimization applications. At the
moment, it is speculative that such structural results can be obtained.

5 Colorings and Steiner Triple Systems

Generation of MPTs from stability ideals is natural and could be extended to other designs.
Now we turn to a different approach. Stability and colorings are closely related concepts
because vertices in a colour class form a stable set. In this section we use colorings to
construct STSs. First we introduce a well known ideal to find a λ coloring of a graph G
provided that λ is known in advance. Then we use two variations of this ideal to construct
STSs.

Lemma 5.1 (Loera [13]) Let G be a graph on n vertices, and let λ be a nonnegative in-
teger.The graph G is λ-colorable if and only if the zero-dimensional system of equations in
C[x1, . . . , xn]

xλi − 1 = 0, for every vertex i ∈ V (G), (10)

xλ−1
i + xλ−2

i xj + · · ·+ xλ−1
j = 0, for every edge {i, j} ∈ E(G), (11)

has a solution. Moreover, the number of solutions equals the number of distinct λ-colorings
multiplied by λ!.

The coloring ideal of λ and G is the ideal Iλ(G) of C[x1 . . . , xn] generated by the polyno-
mials in (10) and (11).

Note that by Theorem 2.4, the coloring ideal of λ and G is radical.
By (10) every vertex can take one of λ possible colors. Let us examine (11) more thor-

oughly. Denote by Pλ(x, y) the polynomial xλ−1 + xλ−2y + · · ·+ yλ−1.

Lemma 5.2 Let λ be a positive integer. If r0 and r1 are roots of unity of xλ−1 then r0 6= r1

if and only if Pλ(r0, r1) = 0.

Proof: We have that

xλ − yλ = (x− y)Pλ(x, y). (12)

Since r0 and r1 are roots of unity rλ0−rλ1 = 1−1 = 0. If r0 6= r1 then 0 = (r0−r1)Pλ(r0, r1),
since r0− r1 6= 0 we have that Pλ(r0, r1) = 0. On the other hand, if r0 = r1 then there exists

an integer j ∈ {0, . . . , λ− 1} such that r0 = r1 = e
2πj
λ
i, and so Pλ(r0, r1) = λ(e

2πj
λ
i)λ−1 6= 0.

The lemma follows.
By (11) if i, j ∈ E(G) then xi should be different to xj because otherwise Pλ(xi, xj) would

be nonzero. In other words, the color assigned to xi should be different to the color assigned
to xj.

11



Proposition 5.3 Let n ≡ 1, 3 (mod 6) be a nonnegative integer. Let λ =
(n2)

3
. The zero-

dimensional system of equations

xλ{i,j} − 1 = 0, for every pair (i, j) ∈ E(Kn)

Pλ(x{i1,j1}, x{i2,j2}) · Pλ(x{i2,j2}, x{i3,j3})·
Pλ(x{i3,j3}, x{i1,j1}) = 0, for each 3-set {(i1, j1), (i2, j2), (i3, j3)}

not inducing a copy of K3 in Kn

has a solution if and only if {{i, j, k}|x{i,j} = x{j,k} = x{k,i}} is an STS.

Proof: Suppose that the system of equations has a solution. The value of x{i,j} is the color for
the edge (i, j) in Kn. We are using as many colors as there are triples in a STS(n). If the col-
oring is not balanced, then some color is assigned to fewer than three edges and some color is
assigned to more than 3 edges. In this way there exist edges (i1, j1), (i2, j2), (i3, j3) and (i4, j4)
for which x{i1,j1} = x{i2,j2} = x{i3,j3} = x{i4,j4}. Among these four edges, there are three which
do not induce a copy of K3 in Kn; we can assume that these edges are (i1, j1), (i2, j2) and
(i3, j3). By the properties of Pλ, Pλ(x{i1,j1}, x{i2,j2})Pλ(x{i2,j2}, x{i3,j3})Pλ(x{i3,j3}, x{i1,j1}) 6= 0
but this contradicts the existence of a solution to the system of equations. Thus three edges
receiving the same color induce a copy of K3 in Kn.

In the other direction, ordering the triples of an STS(n) as {i0, j0, k0}, {i1, j1, k1}, . . . ,
{iλ−1, jλ−1, kλ−1}, and for l = 0, . . . , λ − 1 we assign to x{il,jl}, x{jl,kl} and x{kl,il} the l-th
λ-root of unity then the system of equations is satisfied.

The ideal generated by the polynomials in the system of equations in Proposition 5.3 is
the edge coloring Steiner ideal of order n.

The stability Steiner ideal of order n associates the 3-sets in {0, . . . , n−1} to its variables;
the edge coloring Steiner ideal associates the 2-sets. Does some ideal to generate STSs
associate the variables to 1-sets? The answer is affirmative, but since in an STS(n) each
vertex is assigned to (n − 1)/2 triples, we need (n − 1)/2 copies of each vertex. We denote
by (i, j) the j-th copy of vertex i, i = 0, . . . , n− 1 and j = 1, . . . (n− 1)/2.

Proposition 5.4 Let n ≡ 1, 3 (mod 6) be a nonnegative integer. Let λ be equal to
(n2)

3
. The

zero-dimensional system of equations
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xλ(i,j) − 1 = 0, for every pair (i, j) with

i = 0, . . . , n− 1 and j = 1, . . . , (n− 1)/2

Pλ(x(i1,j1), x(i2,j2)) · Pλ(x(i2,j2), x(i3,j3))·
Pλ(x(i3,j3), x(i4,j4)) · Pλ(x(i1,j1), x(i3,j3))·
Pλ(x(i1,j1), x(i4,j4)) · Pλ(x(i2,j2), x(i4,j4)) = 0, for i1, i2, i3, i4 ∈ {0, . . . , n− 1}

distinct and

j1, j2, j3, j4 ∈ {1, . . . , (n− 1)/2}
Pλ(x(i,j1), x(i,j2)) = 0, for i ∈ {0, . . . , n− 1} and

j1, j2 ∈ {1, . . . , (n− 1)/2}, j1 6= j2

has a solution if and only if {{i, j, k}|x(i,l1) = x(j,l2) = x(k,l3) for some l1, l2, l3 ∈ {0, . . . , (n−
1)/2}} is an STS.

Proof: Analogous to the proof of Proposition 5.3.
The ideal generated by the polynomials in the system of equations in Proposition 5.3 is

the vertex coloring Steiner ideal of order n.
The earlier comments for the stability Steiner ideal of order n are essentially the same

for the ideals in this section. As long as the number of variables decreases the complexity
of the polynomials involved increases. The final effect is that, as we expect, the practical
limitations of these ideals are similar.

6 Ideals and Kirkman Triple Systems

In this section we introduce an ideal based on a combination of stability and colorings for
the generation of Kirkman triple systems (see [5]).

Let s be a positive integer and let n = 6s + 3. A Kirkman triple system of order n is a
Steiner triple system with parallelism, that is, one in which the set of b = (2s + 1)(3s + 1)
triples is partitioned into 3s+ 1 components such that each component is a subset of triples
and each of the elements appears exactly once in each component.

Proposition 6.1 Let s be a positive integer and let n = 6s+3. The zero-dimensional system
of equations

13



x2
{i,j,k} − x{i,j,k} = 0, when {i, j, k} ⊂ {0, . . . , n− 1},
x{i,j,k}x{j,k,l} = 0, when {i, j, k}, {j, k, l} ⊂ {0, . . . , n− 1}

and i 6= l,∑
{i,j,k}⊆{0,...,n−1}

x{i,j,k} − (2s+ 1)(3s+ 1) = 0,

y3s+1
{i,j,k} − 1 = 0, when {i, j, k} ⊂ {0, . . . , n− 1},

x{i,j,k}x{k,l,m}P3s+1(y{i,j,k}, y{k,l,m}) = 0, for every unordered couple of different

3-sets{i, j, k}, and {k, l,m} contained in

{0, . . . , n− 1}.

has a solution if and only if S = {{i, j, k}|x{i,j,k} = 1} is a Kirkman triple system.

Proof: The first three equations in the system generate the stability Steiner ideal of order
n, thus the set of triples S is an STS. A new variable y{i,j,k} is introduced for each vertex
{i, j, k} in J(n, 3, 2). These variables are used for coloring the elements of S; by the fourth
equation each triple receives one of 3s + 1 colors. When x{i,j,k} = 0 the value of y{i,j,k} is
immaterial. By the fifth equation, when x{i,j,k} = 1 the color assigned to y{i,j,k} must be
different from the one assigned to every other triple in S intersecting {i, j, k}.

Using the technique in the proof of Proposition 5.3, every color is associated to exactly
2s+ 1 variables yi,j,k. So S is a Kirkman triple system.

The ideal generated by the polynomials in the system of equations in Proposition 5.3 is
the Kirkman ideal of order n.

In Proposition 6.1 the fifth equation is equivalent to the conditional statement:

if {i, j, k} and {k, `,m} are in S then
Put {i, j, k} and {k, `,m} in different color classes.

Few elements in the ideal suffice for the construction of ideals related to design theory:
stability, colorings, Pλ polynomials and the proper use of conditional polynomial construc-
tions.

7 Parametric generation of STSs

Let V = V(f1, . . . , fs) ⊂ k` be a variety. Let k(t1, . . . , tm) represent the field of rational
functions, that is, quotients between two polynomials in k[t1, . . . , tm]. The rational paramet-
ric representation of V consists of rational functions r1, . . . , r` ∈ k(t1, . . . , tm) such that the
set of points (x1, x2, . . . , x`) given by

xi = ri(t1, . . . , tm) i = 1, . . . , ` (13)
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is equal to V . When functions r1, . . . , r` are polynomials rather than rational functions this
is a parametric polynomial representation. The original defining equations f1, . . . , fs form
the implicit parametric representation of V .

It is well known that not every affine variety has a rational parametric representation;
however the set of points described by a rational parametric representation is always an affine
variety. In this section we consider the triples in a STS(n) as points in R3 (fixing elements
in some particular order for each triple), and then we try to build a parametric polynomial
representation for them. When successful, it is implicitly proved that the points produced
from the triples in the STS form an affine variety.

For instance, for n = 7 the following parametric polynomial equations generate an
STS(7).

x = t mod 7 (14)

y = 1 + t mod 7

z = 3 + t mod 7

Taking t = 0, . . . , 6 produces the STS

{{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}}.

This is a parametric polynomial representation that works exactly as we want. The
polynomials in (14) belong to Z/7Z[x, y, z, t]. However, we cannot generalize this directly
because the quotient ring Z/nZ is a field only when n is prime. This is a technical difficulty,
addressed later. First let us generalize the parametric representation in (14).

Let n ≡ 1, 3 (mod 6) be an integer and let `, l1, l2, l3, n1, . . . , n` be nonnegative integers
such that ni ≤ n for i = 1, . . . , ` and

∏`
j=1 ni = n(n − 1)/6 (the number of triples in an

STS(n)). A polynomial parametric Steiner representation (PPSR) of order n, and parame-
ters `, l1, l2, l3, n1, . . . , n` is a triple ({αi}l1i=0, {βi}

l2
i=0, {δi}

l3
i=0), such that the elements in each

succession are pairwise different and belong to (Z+
⋃
{0})`. We denote a parametric repre-

sentation like this as P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0, {βi}

l2
i=0, {δi}

l3
i=0)). A PPSR is feasible

if the system of equations

x(t) =

l1∑
i=0

aαit
αi y(t) =

l1∑
i=0

bβit
βi z(t) =

l1∑
i=0

cδit
δi

in the variables aα0 , . . . , aαl1 , bβ0 , . . . bβl2 , cδ0 , . . . , cδl3 , (where t = (t1, . . . , tl)) has a solution
such that the set S = {{x(t), y(t), z(t)}|t ∈ {0, . . . , n1 − 1} × . . . × {0, . . . , n` − 1}} is an
STS.

That ni ≤ n for i = 1, . . . , ` is necessary because the operations are on Z/nZ; but it
imposes restrictions on the PPSRs dealt with. For example, only for n = 7 can we have a
PPSR with ` = 1. For any other value of n it is not possible to find an integer n1 satisfying
n1 ≤ n and

∏1
i=1 ni = n(n − 1)/6. In other words, it is impossible to generalize (14) for

n > 7 using only one parameter t.
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The important fact concerning PPSRs is that their feasibility is decided by weak Hilbert
Nullstelensatz Theorem.

Proposition 7.1 Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0,

{βi}l2i=0, {δi}
l3
i=0)) be a PPSR of order n. Let P and Q be the polynomials in Z/nZ[aα0 , . . . , aαl1 ,

bβ0 , . . . , bβl2 , cδ0 , . . . , cδl3 ], P (u) = (u−1)(u−2) · · · (u−n+1), Q(u) = uP (u), u ∈ {0, . . . , n−
1}. Then P is feasible if and only if the zero-dimensional system of equations

Q(aαi)
Q(bβj)
Q(cδk)

 = 0,
for i = 0, . . . , l1,
j = 0, . . . , l2 and k = 0, . . . , l3

(15)

P (x(t)− y(t))
P (x(t)− z(t))
P (y(t)− z(t))

 = 0,
for t ∈ {0, . . . , n1 − 1}×
. . .× {0, . . . , n` − 1} (16)

P (x(t1)− x(t2))P (y(t1)− y(t2))
P (x(t1)− y(t2))P (y(t1)− x(t2))
P (x(t1)− x(t2))P (z(t1)− z(t2))
P (x(t1)− z(t2))P (z(t1)− x(t2))
P (z(t1)− z(t2))P (y(t1)− y(t2))
P (z(t1)− y(t2))P (y(t1)− z(t2))


= 0,

for t1, t2 ∈ {0, . . . , n1 − 1}×
. . .× {0, . . . , n` − 1}, t1 6= t2

(17)

(18)

has a solution.

Proof: Assume that the system of equations is satisfied. Then by (15) the values of these
coefficients should be in the set {0, 1, . . . , n − 1} which corresponds to the roots of the
polynomial Q(t). Also (16) guarantees that the elements in each of the triples in S are
distinct. (The polynomial P plays a similar role to that of the polynomials Pλ introduced
in Section 5.) Finally, by (17) every pair of different vertices in {0, . . . , n − 1} appears in
exactly one of the triples and thus it is an STS. The converse is immediate.

The ideal generated by the polynomials in Proposition 7.1 is the parametric Steiner ideal
of P .

Solutions to the polynomials in the parametric Steiner ideal of a PPSR can be found
using Gröbner bases. For example, the Gröbner basis for the unique possible PPSR of order
n = 7 and ` = l1 = l2 = l3 = 1 is

{ c6
1 − 1, b1 − c1, a1 − c1, c

7
0 − c0,

b6
0 + b5

0c0 + b4
0c

2
0 + b3

0c
3
0 + b2

0c
4
0 + b0c

5
0 + c6

0 − 1,
a5

0 + a4
0b0 + a4

0c0 + a3
0b

2
0 + a3

0b0c0 + a3
0c

2
0 + a2

0b
3
0 + a2

0b
2
0c0 + a2

0b0c
2
0 + a2

0c
3
0 + a0b

4
0 + a0b

3
0c0+

a0b
2
0c

2
0 + a0b0c

3
0 + a0c

4
0 + b5

0 + b4
0c0 + b3

0c
2
0 + b2

0c
3
0 + b0c

4
0 + c5

0}

A solution that makes all these polynomials zero is a0 = 0, b0 = 1, c0 = 3, a1 = 1, b1 = 1,
and c1 = 1; it corresponds to the PPSR in (14).
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Corollary 7.2 A PPSR P is feasible if and only if the Gröbner basis of the parametric
Steiner ideal of P does not contain 1.

While these provide a relatively simple way to determine the feasibility of a PPSR, it is
limited to prime orders. We can circumvent this limitation by working in the complex number
field. We carry the operations from Z/nZ to C through the transformation φ : Z/nZ→ C,

φ(k) = e
2πk
n
i. Two well known properties of φ are: For every a and b in Z/nZ

φ(a+ b) = φ(a)φ(b) (19)

φ(a · b) = φ(a)b = φ(b)a

Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0, {βi}

l2
i=0, {δi}

l3
i=0))

be a PPSR of order n. We extend the domain of φ to the polynomial x(t) =
∑l

j=1 aαjt
αj

as φ(
∑l

j=1 aαjt
αj) =

∏l
j=1 φ(aαj)

tαj =
∏l

j=1 â
tαj
αj

. This extension is compatible with (19);
it takes a polynomial on the variables aα0 , . . . , aαl1 and transforms it into a polynomial on
the variables âα0 , . . . , âαl1 (here âαj stands for φ(aαj)). For each t ∈ {0, . . . , n1 − 1} × . . .×
{0, . . . , n` − 1}, φ(x(t)(aα0 , . . . , aαl1 )) = φ(x(t))(âα0 , . . . , âαl1 ). Similar extensions are made
to φ in order to be applied to the polynomials y(t) and z(t).

Proposition 7.3 Let n ≡ 1, 3 (mod 6) be a prime. Let P(n, `, l1, l2, l3, {ni}`i=1, ({αi}
l1
i=0,

{βi}l2i=0, {δi}
l3
i=0)) be a PPSR of order n. Let Pn and Qn be polynomials in C[â0, . . . , âl, b̂0, . . .,

b̂l, ĉ0, . . . , ĉl], Pn(u, v) = un−1 +un−2v+ . . .+vwn−2 +wn−1, Qn(u) = un−1, u, v ∈ {0, . . . , n−
1}. Then P is feasible if the zero-dimensional system of equations

Qn(âαi) = Qn(b̂βj) = Qn(ĉδk) = 0,
for i = 0, . . . , l1,
j = 0, . . . , l2 and k = 0, . . . , l3

(20)

Pn(φ(x(t)), φ(y(t)))
Pn(φ(x(t)), φ(z(t)))
Pn(φ(y(t)), φ(z(t)))

 = 0,
for t ∈ {0, . . . , n1 − 1}×
. . .× {0, . . . , n` − 1} (21)

Pn(φ(x(t1)), φ(x(t2)))Pn(φ(y(t1)), φ(y(t2)))
Pn(φ(x(t1)), φ(y(t2)))Pn(φ(y(t1)), φ(x(t2)))
Pn(φ(x(t1)), φ(x(t2)))Pn(φ(z(t1)), φ(z(t2)))
Pn(φ(x(t1)), φ(z(t2)))Pn(φ(z(t1)), φ(x(t2)))
Pn(φ(z(t1)), φ(z(t2)))Pn(φ(y(t1)), φ(y(t2)))
Pn(φ(z(t1)), φ(y(t2)))Pn(φ(y(t1)), φ(z(t2)))


= 0,

for t1, t2 ∈ {0, . . . , n1 − 1}×
. . .× {0, . . . , n` − 1}, t1 6= t2

(22)

(23)

has a solution in â0, . . . , âl1 , b̂0, . . . , b̂l2 , ĉ0, . . . , ĉl3 if and only if P is feasible.

Proof: Assume that the system of equations has a solution. From (20) â0 . . . , â`, b̂0, . . . , b̂`,
ĉ0, . . . , ĉ` could only be assigned to nth roots of unity. Since φ(x(t)), φ(y(t)), and φ(z(t)) are
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expressed as products and integer powers of nth roots of unity, they evaluate to nth roots
of unity too. The polynomial Pn is the polynomial Pλ, with λ = n, defined in Section 5, and
so, by Lemma 5.2 the arguments in the proof of Proposition 7.1 with respect to (16) and
(17) are applicable to (21) and (22), respectively. So Ŝ = {{φ(x(t)), φ(y(t)), φ(z(t))}|t ∈
{0, . . . , n1 − 1} × · · · × {0, . . . , n` − 1}} contains only triples of nth roots of unity and each
pair of nth roots of unity is contained in exactly one triple. When we apply φ−1 to the
elements in every triple in Ŝ we obtain an STS S.

From a computational point of view, the Gröbner basis of the ideal in Proposition 7.1
can be found faster in Macaulay 2 than the corresponding Gröbner basis for Proposition 7.3.
For n = 7 and ` = 1 we required with the former approach 12 seconds, with the last one the
system exhausted the memory.

Now we do the same type of transformation done from Proposition 7.1 to Proposition 7.3
in the opposite direction to get an ideal on Z/nZ to obtain a λ-coloring of a graph G. We
transform Lemma 5.1 in the following way.

Lemma 7.4 Let G be a graph on n vertices for some prime n, and let λ be a nonnegative
integer. Graph G is λ-colorable if and only if the following zero-dimensional system of
equations in Z/nZ[x1, . . . , xn]

xi(xi − 1) · · · (xi − λ) = 0, for every vertex i ∈ V (G), (24)

(xi − xj − 1) · · · (xi − xj − λ) = 0, for every edge {i, j} ∈ E(G), (25)

has a solution.

This new ideal is useful only for prime values of n but the calculation of its Gröbner basis
is more efficient.

8 Conclusions

When Hilbert submitted his famous finiteness theorem (see [6]) to the Mathematische An-
nalen in 1888, Gordan rejected the article. Gordan had earlier established the finiteness of
generators for binary forms using a complex computational approach. He expected not only
a finiteness existence proof, but also a more constructive approach. Gordan comment about
Hilbert’s work was “Das ist nicht Mathematik. Das ist Theologie” (This is not Mathemat-
ics. This is Theology) [9]. Encouraged by Gordan’s opinion, Hilbert provided estimates of
the maximum degree of the minimum set of generators. But in 1899 Gordan developed a
constructive proof of the finiteness theorem, using what is now called the Gröbner basis to
reduce to the more easily treated monomial case.

Gordan’s tools were made more practical with the advent of modern computers. De-
spite this, implicit in the calculation of many Gröbner bases is the solution of NP-complete
problems. Hence we cannot hope to solve every possible problem stated with Gröbner bases.
Nevertheless, important problems in physics, robotics and engineering have been successfully
solved with them.
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Characterizations of combinatorial designs test these algebraic tools. We have examined
how to represent the rich structure of designs into algebraic terms. We tested in Macaulay
2 that every ideal works as described. Unfortunately, the large dimensions of the systems
of polynomials involved make manipulation impractical from a computational point of view.
The development of parallel algorithms to calculate Gröbner basis efficiently are remarkable
(see [2, 16]). Such advances may permit the direct calculation for the ideals introduced
in this paper for small values of n. On the other hand, the increasing industrial interest in
Gröbner basis will bring in the near future computer hardware especially designed to making
fast the calculations involved. This progress will be important for design theory.

We opened unexplored connections between these algebraic geometry and combinatorial
design theory; this is the main contribution of our work. From the algebraic geometry point
of view the most interesting result from these connections is the discovery of 0-1 ideals whose
structural properties and applications in combinatorics are explored in [18].
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