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Abstract

Let G be an arbitrary graph. The main results are explicit representa-
tions of the edge cone of G as a finite intersection of closed halfspaces.
If G is bipartite and connected we determine the facets of the edge cone
and present a canonical irreducible representation.
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1 Edge cones

In the sequel we use standard terminology and notation from graph theory
and adopt [1] as our main reference. For the reader’s convenience, along the
way, we recall a few notions about graphs and polyhedral geometry. We begin
by fixing some notation that will be used throughout.

Let G be a simple graph with vertex set V(G) = {vy,...,v,} and edge
set E(G) = {z1,...,2,}. Thus every edge z; is an unordered pair of distinct
vertices z; = {v;;,vs, } and we set a; = e;; + e;,, where e; is the ith unit vector
in R". The incidence matriz of G, denoted by M¢ = (a;;), is the n x ¢ matrix
whose columns are precisely the vectors ay,. .., a,. We set Ag (or simply A if
G is understood) equal to the set {ay, ..., a,} of column vectors of M. Since
a; represents an edge of G sometimes «; is called an edge or an edge vector.
The edge cone of G, denoted by Ry A, is defined as the cone generated by A:

q

R, A:= {Z a;o

=1

a; € Ry for all z} Cc R",

where R, is the set of non negative real numbers. Note R, A # (0) if G is not
a discrete graph, i.e., a graph without edges. By [3] one has

n — ¢o(G) = rank(Mg) = dim R, A,

where ¢o(G) is the number of bipartite connected components of G. By the
finite basis theorem [7, Chapter 4] R, A is a rational polyhedral cone, i.e., Ry A
is the intersection of finitely many closed halfspaces of the form:

H! :={zx e R"|{(x,a) > 0},

where 0 # a € Z" and the nonzero entries of a are relatively prime. Here (z, a)
denotes the standard inner product of x and a. Note that if H, := HZ,_, then
the intersection H;” N H is the bounding hyperplane

H, :={z|{x,a) =0}

with normal vector a. To simplify notation set Q = R, A. Recall that a subset
F C R"isa face of Q if F = QN H, for some hyperplane H, such that Q) C H;
or Q C H,. The hyperplane H, is called a supporting hyperplane of (). The
improper faces of ) are Q and (), all the other faces are called proper faces. If
a face of () has dimension dim(Q)) — 1 it is called a facet. The dimension of Q)
is by definition the dimension of aff(Q), the affine hull of @). Note that a face
of @ is again a finitely generated cone, see [7].



Definition 1.1 If @) = R, A is represented as

Q= (@) (ﬂ H) m

with a; € R* \ {0} for all i and none of the closed halfspaces H/ ..., HS
can be omitted from the intersection, we say that Eq. (1) is an irreducible

representation of ().

Part of the importance of an irreducible representation can be seen in the
following general fact.

Theorem 1.2 [7, Theorem 3.2.1] If Q@ = aff(Q) N HS N --- N H is an
irreducible representation of ), then the facets of () are precisely the sets
Fy, ..., F,, where F; = QN H,,. Moreover each proper face of @ is the in-
tersection of those facets of ) that contain it.

The main goal is to give an explicit combinatorial description of the edge
cone of GG, see Theorem 2.6 and Corollary 2.8. This description generalizes
that of [5, Corollary 3.3]. In loc. cit. only the non bipartite case was studied.
Another goal is to study in detail the facets of the edge cone of a connected
bipartite graph and show a canonical irreducible representation of the edge
cone, see Proposition 3.6 and Theorem 3.9. As an application the classical
marriage theorem will follow.

To show our results we use graph theory, linear algebra, and polyhedral
geometry. The proofs require a careful analysis at the graph theoretical level.
Our main references for graphs, algebra and geometry are [1, 2, 4, 6, 7].

Definition 1.3 A graph G is bipartite if there is a bipartition (V1,V3) of G,
that is, V] and V5 are vertex classes satisfying:

(a) V(G) =11 U V4,
(b) ‘/lﬂ‘/Zzwa and
(c) every edge of G joins a vertex of V; to a vertex of V5.
Recall that a graph G is bipartite if and only if all its cycles are of even

length. If GG is bipartite, then its incidence matrix is totally unimodular, that
is, all the 7 x ¢ minors of M are equal to 0 or £1 for all i > 1, see [4].



2 An explicit representation of the edge cone

Lemma 2.1 Ifv; is not an isolated vertex of G, then the set F = H,, "R, A
s a proper face of the edge cone.

Proof. Note ' # () because 0 € F, and Ry A C H}. Since v; is not an
isolated vertex Ry A ¢ H... O
Given a subset A C V(G), the neighbor set of A, denoted Ng(A) or simply
N(A), is defined as
N(A) = {v € V(G) | vis adjacent to some vertex in A}.

Let A be an independent set of vertices of (G, that is, no two vertices of A
are adjacent. The supporting hyperplane of the edge cone of G defined by

IEEI IR

v;EA v, EN(A)
will be denoted by H 4.

Lemma 2.2 If A is an independent set of vertices of G and F = R, AN Hy,
then either F is a proper face of the edge cone or FF = R, A.

Proof. It suffices to prove the containment Ry A C H . Take an edge {vj, v}
of G. If {vj, v} N A # 0, then e; +episin Hy, else e; + ¢, is in H,. 0

Definition 2.3 The support of a vector 3 = (3;) € R" is defined as
supp(6) = {6 | 6; # 0}.

Lemma 2.4 ([5]) LetV = {v1,...,v,} bethe verter set of G and let G4, ..., G,
be the connected components of G. If Gy is a tree with at least two vertices and
Gy, ..., G, are unicyclic non bipartite graphs, then ker(ME) = () for some (3
in R™ with supp(8) = {1, —1} such that V(Gy) = {v; € V| §; = +1}.

For use below we recall the following form of Farkas’s Lemma, which is called
the fundamental theorem of linear inequalities, see [4, Theorem 7.1].

Theorem 2.5 Let A= {ay,...,a,} be a set of vectors in R" and let o € R".
If « ¢ Ri A and t = rank{ay, ..., a4, a}, then there exists a hyperplane H,
containing t — 1 linearly independent vectors from A such that (a, ) > 0 and
(a,0;) <0 fori=1,...,q.



Theorem 2.6 If G is a connected graph with vertex set V- = {vy,...,v,} and
R, A is the edge cone of G, then

N

where F is the family of all the independent sets of vertices of G and H is
the closed halfspace {x € R™ | z; > 0}.

Proof. Let A = {ay,...,qa,} be the set of column vectors of the incidence
matrix of G. Since R, A is clearly contained in the right hand side of Eq. (2)
it suffices to prove the other containment. Take o € R” in the right hand side
of Eq. (2). The proof is by contradiction, that is, assume that o ¢ R, . A. By
[5, Corollary 3.3] we may assume that G bipartite with n > 3 vertices.

Note that if (V3, V3) is the bipartition of G, then aff (R, .A) is the hyperplane

Z Ti = Z Ti,
v, €V v;EV2
because dim(RA) =n—1. As H;, NH,, = Hy,, the vector a is in aff(R A).
As a consequence rank(A U {a}) =n — 1.
By Theorem 2.5 there is @ € R” and there are linearly independent vectors
Qt, ..., 0,9 in A such that

(i) {(a,0;) =0 fori=1,2,...,n— 2,
(i) (a,;) <0 fori=1,2,...,q, and
(iii) (@, ) > 0.

Observe that Ry A ¢ H, because aff(R;.A) # H,. There exists a; in A
such that aq,...,q, 2,0, is a basis of aff(R;.4) as a real vector space. In
particular we can write

a=MNa;+ -+ A\ 20y o+ )\jOéj ()\Z € R) (3)

It follows that (v, a) = A;j(ej,a) > 0. Thus \; < 0.
Consider the subgraph D of G whose edges correspond to ay, ..., a, 2 and
its vertex set is the union of the vertices in the edges of D. Set k = |V (D)].
By [3] one has:
n—2=rank(Mp) =k — ¢o(D),

where Mp is the incidence matrix of D and c¢y(D) is the number of bipartite
components of D. Thus 0 < n —k = 2 — ¢o(D). This shows that either
co(D)=1and k =n—1or ¢p(D) =2 and k = n.



Case (I): Assume that Cy(D) = land k = n—1. Set V(D) = {v1,...,vp_1}.
As D is a tree with n — 2 edges and (a;,a) =0 fori =1,...,n — 2, applying
Lemma 2.4, one may assume that a = (ay,...,a, 1,a,), where a; = £1 for
1<:<n—1.

Set a’ = (0,...,0,—1) = —e,. Next we prove the following

(a) (a,a’)y =0fori=1,...,n—2.
(b) (a,a’) = —1 and (aj,a) < 0.

Condition (a) is clear. To prove (b) first note o; ¢ R(ay,...,a,_2). Then
a; = e + ey, because otherwise the “edge” a; added to the tree D form a
graph with a unique even cycle, to derive a contradiction recall that a set of
edge vectors forming an even cycle are linearly dependent. Thus (a;,a’) = —1.

On the other hand (a;,a) < 0, because if (a;,a) = 0, then the hyper-
plane H, would contain the linearly independent vectors o, ..., a,—2,a; and
consequently aff(R, .A) would be equal to H,, a contradiction.

To finish the proof of this case we use the inequality

(a,a"y = N\j{aj,a") >0

to conclude («,a’) > 0, a contradiction because o € H .

Case (II): Assume that Co(D) = 2 and k = n. Let D; and D, be the
components of D and set U; = V(D;) and Uy = V(Dy).

Using Lemma 2.4 we can relabel the vertices of the graph D and write
a = rb+ sc, where 0 # r > s > 0 are rational numbers,

b= (b1, ., bm,0,...,0), ¢c¢=(0,...,0,Cmi1,---Cn),

Uy ={vi,...,0m}, by = %1 for i < m, and ¢; = £1 for i > m. Set a’ = b. Note
the following:

(a) {(aj,a’y =0fori=1,...,n—2.
(b) (oy,a’) = —1 and («;, a) < 0; this holds for any «; ¢ R(ay, ..., a,_2).

Condition (a) is clear. To prove (b) first note that the inequality (a;,a) < 0
can be shown as in case (I). Observe that if an “edge” «j has vertices in U;
(resp. Us), then (ag,a) = 0. Indeed if we add the edge ay to the tree Dy
(resp. D,) we get a graph with a unique even cycle and this implies that
Qi,...,Qn_9,qy are linearly dependent, that is, (o, a) = 0. Thus a; =e; + ¢
for some v; € U; and v, € U,. From the inequality

(aj,a) =r{aj, by + s(aj,c) =1bi + sc, <0
we obtain b; = —1 = (o, d'), as required.
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Next we set
A:{UlEV“)Z:l} and B:{UZEV“)l:—l}

Note that ) # A C U; and ) # B C Uy, because D;, D, are trees with at least
two vertices. We will show that A is an independent set of G and B = N¢(A).

If A is not an independent set of G, there is an edge {v;, v,} of G for some
v;,ve in A. Thus a = e; + ¢4, by (a) and (b) we get (a’,ax) < 0, which is
impossible because (@', ) = 2. This proves that A is an independent set of
G.

Next we show Ng(A) = B. If v; € Ng(A), then o = e; + €, for some v, in
A, using (a) and (b) we obtain (a’, ax) = b;+1 < 0 and b; = —1, hence v; € B.
Conversely if v; € B, since D; has no isolated vertices, there is 1 < k <n —2
so that ay = e; + ey, for some £, by (b) we obtain (a’, ay) = —1+ b, = 0, which
shows that v, € A and v; € Ng(A).

Therefore Hy = H,. Since Ry A ¢ H, (this follows from (b)), there is
ar ¢ Hy, thus H, N H, # 0 and consequently H, = H,. By hypothesis
a € H,, hence (a,a’) < 0. From Eq. (3) together with and (a) and (b) one
has

(a,d') = N(ayj,d')y = =X > 0,

a contradiction. O

The next two results give an explicit representation by closed halfspaces
of the edge cone of an arbitrary graph. Those representations were known for
connected non bipartite graphs only [5].

Corollary 2.7 If G is a graph with vertex set V- = {vy,...,v,} and Ry A is
the edge cone of G, then

was ()0 (0)

where the intersection is taken over all the independent sets of vertices A of G
and Hf = {x € R" |z; > 0}.

Proof. Let Gy,...,G, be the connected components of G. For simplicity
of notation we assume that r = 2 and V(G;) = {vi,...,v,}. There is a
decomposition

R—FA = R—FACH S R—FAGQ'
Let ¢ be a vector in the right hand side of Eq. (4). One can write

(S:((Si):ﬁ—f—’)/:((51,...,6m,0,...,0)+(0,...,0,(Sm+1,...,6n).



Let A be an independent set of Gy. Note Ng(A) = Ng, (A), hence

dNou< D =) 6

v;EA v;ENg(A) v;i€Ng, (A)

Applying Theorem 2.6 yields 8 € R, Ag,. Similarly one has v € Ry Ag,.
Hence § € R, Ag, as required. O

Corollary 2.8 Let G be a graph with vertex set V.= {vq,...,v,}. Then a
vector © = (x1,...,2,) € R* is in R A if and only if x is a solution of the
system of linear inequalities

N
<o
I
—
S

D veali— ZvieN(A) x; < 0, for all independent sets A C V.

Proof. It follows at once from Corollary 2.7. a
Theorem 2.9 If G is a graph with vertex set V.= {vy,...,v,} and F is a
facet of the edge cone of G, then either
(a) F=R. An{x € R" |z; = 0} for some 1 <i <n, or
(b) F =Ry AN Hy for some independent set A of G.
Proof. By Corollary 2.7 we can write
RiA=aff(Ry A)NH N---NH

for some hyperplanes Hy, ..., H, such that none of the halfspaces H; can be
omitted in the intersection and each Hj is either of the form H_ ., or H; = H,
for some independent set A. By Theorem 1.2 the facets of R, A are precisely
the sets Fi,..., F,., where F; = H; "R A. O

3 Studying the bipartite case

For connected bipartite graphs we will present sharper results on the irre-
ducible representations of edge cones and give a characterization of their facets.

Proposition 3.1 Let G be a connected bipartite graph with bipartition (V1,V3).
If A is an independent set of G such that A # V; for i = 1,2, then F =
R, AN Hy is a proper face of the edge cone.



Proof. Assume that N(A) = V5. Take any v; € Vi \ A and any v; € V5
adjacent to v;, then e; +e; ¢ Hy. Thus we may assume that N(A) # V; for
i=1,2.

Case (I): N(A)NV; # 0 for i = 1,2. If the vertices in N(A)NV; fori = 1,2
are only adjacent to vertices in A, then pick vertices v; € N(A) N'V; and note
that there is no path between v, and vy, a contradiction. Thus there must be
a vector in the edge cone which is not in H 4.

Case (IT): A C Vj. If the vertices in N(A) are only adjacent to vertices in
A. Then a vertex in A cannot be joined by a path to a vertex in V5 \ N(A), a
contradiction. As before we obtain Ry A ¢ H 4. O

Proposition 3.2 Let G be a connected bipartite graph with bipartition (Vy, V3)
and F the family of independent sets A of G such that HaNR, Ag is a facet.
If Aisin F and V; N A # 0 for i = 1,2, then the halfspace H, is redundant
in the following expression of the edge cone

R, A = aff (R, A) N (ﬂH )ﬂ(ﬁlm)

AeF

Proof. Set A = {ay,...,a,}. One can write A = A; U Ay with A; C V] for
i = 1,2. There are ay,...,q, 5 linearly independent vectors in Hy N R, A,
where n is the number of vertices of G. Consider the subgraph D of G whose
edges correspond to aq,...,a,_s and its vertex set is the union of the vertices
in those edges. Note that D cannot be connected. Indeed there is no edge
of D connecting a vertex in Ng(A;) with a vertex in Ng(As) because all the

vectors aq, ..., ay,_o satisfy the equation
D= ) .
v;€EA UzENG

Hence by the proof of Theorem 2.6 it follows that D is a spanning subgraph
of G with two connected components D; and D, (which are trees) such that
V(D;) = A; UNg(A;), i = 1,2. Therefore H 4. is a proper support hyperplane
defining a facet F; = Ha, N Ry A, that is Ay, Ay are in F. Since H, N H, is
contained in H, the proof is complete. O

Proposition 3.3 Let G be a connected bipartite graph with bipartition (V1,V3).
If Ay C Vo and F = Ha, "Ry A is a facet of the edge cone of G, then

Hy Naff(A")  where Ay = Vi \ N(Ay) # 0, or

— ! _
HAzﬂaff(A) = { H;' Naff(A")  for some vertex v; with G \ {v;} connected,

where A’ = AU {0}.



Proof. Let us assume that G has p vertices vq,...,v, and V; is the set of the

first m vertices of G. Set A = {ay,...,a,}. There are a4, ..., a, o linearly
independent vectors in the hyperplane H4,. Consider the subgraph D of GG
whose edges correspond to a,...,q, o and its vertex set is the union of the

vertices in those edges. As G is connected either D is a tree with p — 1 vertices

or D is a spanning subgraph of G with two connected components.
If D is a tree, write V(D) = V(G) \ {v;} for some i. Note

<aj?aA2> = _<ajv€i> (] =1,... aQ)a

A, = Z €; — Z €;.
v; €A v, EN(A)
Indeed if the “edge” «; has vertices in V' (D), then both sides of the equality
are zero, otherwise write a; = e; + e,. Observe v; ¢ Ay and v, € N(Ay)
because H,4, being a facet cannot contain «;, thus both sides of the equality
are equal to —1. As a consequence since aff(A’') = R(a, ..., a,_2, ;) for some
a; = e; + e, we rapidly obtain

where

(a,aa,) = —(a,e;)  (Va € aff(A")).

Therefore
Hy Naff(A') = Hf naff(A),

as required.

We may now assume that D is not a tree. We claim that A; = V;\ N(A4,) #
0. If Vi = N(A,). Take v; € V5 \ Ay and {v;, v;} and edge of D containing v;.
Hence since v; € N(As) we get (e; + €, @4,) = —1, a contradiction because
e; +e; is in Hy,. Thus A; # ). Since all the vectors in aff(A’) satisfy the

linear equation
m p
E Ty = E L,

=1 i=m+1

we obtain

HZ2 N aff(A') =4 TE aff(A') Z Z; S Z ZT;

v; EVI\N(A2) v; EVa\ A

Hence we need only show V5 \ Ay = N(A;). The containment N(A;) C 5\ Ay
holds in general. For the reverse containment take v; € V5 \ As. There is v;
such that {v;,v;} is an edge of D. If v; € N(Ay), then (e; + €j,a4,) = —1, a
contradiction because e; + e; € Hy,. Hence v; ¢ N(As) and v; € N(4,). O

For use below we state the following duality of facets which follows from
the proof of Proposition 3.3.
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Lemma 3.4 Let G be a connected bipartite graph with bipartition (V1,V3) and
let F=HsNR, A be a facet of Ry A with A CVy. Then

(a) If N(A) = Va, then A =Vi \ {v;} for somev; € Vi and F = H,, "R, A.
(b) If N(A) C Vs, then F' = Hy,\nay "Ry A and N(Vo \ N(A)) = Vi \ A.

Definition 3.5 For any set of vertices S of a graph G, the induced subgraph
(S) is the maximal subgraph of G with vertex set S.

Proposition 3.6 Let G be a connected bipartite graph with bipartition (Vy, V3)
and let AC V. Then F = HyNR_ A is a facet of Ry A if and only if

(a) (AU N(A)) is connected with vertex set V(G) \ {v} for some v € V1, or

(b) (AUN(A)) and (Vo \ N(A)) U (Vi \ A)) are connected and their union
s a spanning subgraph of G.

Moreover any facet has the form FF = Hy "R, A for some A CV;, i =1 or
1= 2.

Proof. The first statement follows readily from Lemma 3.4 and using part of
the proof of Theorem 2.6. The last statement follows combining Theorem 2.6
with Proposition 3.2. O

Remark 3.7 (a) In Proposition 3.6 the case (a) is included in case (b). To
see this make N(A) = V5 and note that ((V2\ N(A)) U (V4 \ A)) must consist
of a point. (b) The facets of the edge cone of G for G non bipartite were
characterized in [5, Theorem 3.2].

Lemma 3.8 Let G be a connected bipartite graph with bipartition (V1,V3) and
let F' be a facet of Rt A. If F = Hy,NRy A= HgNR A with A CVy and
B C Vi, then A= B.

Proof. Set V} = {vy,...,vn} and Vo = {vmyi1,. .., Umin}. Recall that the
equality
T+ + Ty, =Tmpg1 T+ T
defines aff(R; A).
Case (I): N(A) = V5. Then by Lemma 3.4 (after permutation of vertices)
A={vy,...,vn 1}. Hence any = € F satisfies

v;EA UiGN(A)

and thus F' = H, "Ry A. If v,, € B, then {v,,,v;} € E(G) for some v; in
N(B), thus e,, +e; € Hg and consequently e,, +¢e; € H, , a contradiction.

11



Hence v,, ¢ B, that is, B C A. If N(B) = V3, then by Lemma 3.4 A = B.
Assume that V3 \ N(B) # 0, to complete the proof for this case we will show
that this assumption leads to a contradiction. First note that v, is not adjacent
to any v; € Vo \ N(B). Indeed if {v,,,v;} € E(G), then e,, +¢; € Hg. Thus
em +¢€; € H,, , a contradiction. Therefore by the connectivity of G at least
one vertex v; € Vi \ B must be adjacent to both a vertex v; € V5 \ N(B) and a
vertex vy € N(B), which is impossible because ¢;+¢;, € H, and e;+e, ¢ Hp.

Case (IT): N(A) C Vy and N(B) C V5. We begin by considering the subcase
ANB # (). Take vy € ANB and vy # v € B. By Proposition 3.6 the subgraph
(BU N(B)) is connected, hence there is a path of even length

P = {00,01,1)2, ey Uop—1, U2p = U}

such that vy; € B for all i. Note that vy € A. If vy ¢ A, then e; + ey € Hp
and e; + ey ¢ Hy, a contradiction. By induction we get vy; € AN B for all i.
Hence v € A. This proves B C A, a similar argument proves A = B.

Assume now that AN B = (. We claim N(A) N N(B) = (), for otherwise
if {vj, v} is an edge with v; € B and v, € N(A) N N(B), then e; + e, ¢ Hy
because v; ¢ A and e; + e, € Hp, a contradiction.

We may now assume that AN B = N(A)N N(B) = (. Observe AU B #
V5 because if V, = AU B, then G would be disconnected with components
(AUN(A)) and (BU N(B)). Take v; € Vi \ (AU B) such that v, is adjacent
to some vy in N(A) U N(B), this choice is possible because G is connected.
Say vy, € N(A). Note vy ¢ N(B). Then e; + e, € Hp and e; + ¢, ¢ Hy, a
contradiction. a

Putting together the previous results we obtain the following canonical way
of representing the edge cone. The uniqueness follows from Lemma 3.4 and
Lemma 3.8.

Theorem 3.9 If G is a connected bipartite graph with bipartition (Vi,Vs),
then there is a unique irreducible representation

Ry A =aff(Ry A) N (NiZ Hy,) N (NiezH)
such that A; C Vi for all i and v; € Vy fori € T.
Lemma 3.10 If G is a bipartite graph, then
Z" "Ry A =NA.

In particular if (B1, ..., By) is an integral vector in the edge cone, then Y . | f;
1S an even integer.
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Proof. Let A = {ai,...,qa,} be the set of column vectors of the incidence
matrix M of G. Take o € Z" N R, A, then by Carathéodory’s Theorem |2,
Theorem 2.3] and after an appropriate permutation of the a;’s we can write

CY:U1CY1+"'+77rCYr (77220)7

where r is the rank of M and «q,...,«, are linearly independent. On the
other hand the submatrix M’ = (a1 ---«;) is totally unimodular because G
is bipartite (see [4]), hence by Kronecker’s lemma [4, p. 51] the system of
equations M’z = « has an integral solution. Hence « is a linear combination
of aq,...,a, with coefficients in Z. It follows that n; € N for all 7, that is,
a € NA. The other containment is clear. 0

As an application we recover the following version of the marriage problem
for bipartite graphs, see [1]. Recall that a pairing of all the vertices of a graph
G is called a perfect matching.

Theorem 3.11 (Marriage Theorem) If G is a bipartite graph, then G has
a perfect matching if and only if

Al < IN(4)|
for every independent set of vertices A of G.

Proof. Note that G has a perfect matching if and only if the vector § =
(1,1,...,1) is in NA. By Lemma 3.10  is in NA if and only if g € R, A.
Thus the result follows from Corollary 2.8. O
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