Centro de Investigación y de Estudios Avanzados del IPN Departamento de Matemáticas

Examen de admisión a la Maestría

09 de julio de 1999

1. Algebra lineal

1.1 Sea una matriz de orden n con entradas reales y sea I la matriz identidad de orden n. Si $A^2 = 2I$, demostrar que A + I es invertible y expresar su inversa en trminos de A y de I.

1.2 Determinar la matriz (respecto de la base canónica) de un operador lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ que satisface $T^2 = I$ y T((1,1)) = (1,0).

1.3 Para que valores de los siguientes vectores generan un subespacio de dimensión 2?

$$\alpha_1 = (a, 1, 0), \alpha_2 = (1, a, 1), \alpha_3 = (0, 1, a), \alpha_4 = (1, 1, 1).$$

2. Cálculo

2.1 Calcule la edrivada de la función F definida en $\left[0,1\right]$ como:

$$f(x) = \int_{x^2}^x \sqrt{1 + t^2 dt}.$$

2.2 Probar que una de las siguientes series es convergente y la otra divergente

$$\sum_{n=1}^{\infty} \frac{1}{n} \quad y \qquad \qquad \sum_{n=1}^{\infty} \frac{2}{n^2}$$

2.3 Sean k un entero positivo fijo y a un número real tal que 0 < a < 1. Demostrar que

$$\lim_{n \to \infty} \binom{n}{k} a^n = 0$$

Recuerde que, por definición, $\binom{n}{k} = \frac{n!}{k!(n-k)}$.

3. Problemas opcionales

- 3.1 Sea $\mathbb R$ el conjunto de los números reales con la topología usual. Cuáles de las siguientes afirmaciones son correctas?
 - (a) La unión de toda familia finita de conjuntos abiertos es un conjunto abierto.
 - (b) La unión de toda familia de conjuntos cerrados es un conjunto cerrado.
 - (c) Todo conjunto infinito y acotado tiene una sucesión de puntos distintos que convergen en \mathbb{R} .
- 3.2 Sean $f(x) = a_n x^n + \ldots + a_1 x + a_0$ y $g(x) = b_m x^m + \ldots + b_1 x + b_0$ dos funciones polinomiales con coeficientes reales. Probar que si f(a) = g(a) para todo $a \in [0, 1]$, entonces f(a) = g(a) para todo $a \in \mathbb{R}$.
- 3.3 Sean f,g dos funciones continuas y no-negativas sobre $[a,\infty)$ y suponga que existe el límite:

$$L := \lim_{x \to \infty} [f(x)/g(x)].$$

Demuestre:

- (a) Si 0 < L < ∞ entonces ambas integrales $\int_a^\infty f(x)dx$ y $\int_a^\infty g(x)dx$ convergen o ambas divergen.
- (b) Si L = 0 y $\int_a^\infty g(x) dx$ converge entonces $\int_a^\infty f(x) dx$ converge.

- (c) Si $L = \infty$ y $\int_a^\infty g(x) dx$ diverge, entonces $\int_a^\infty f(x) dx$ diverge.
- 3.4 Si (X,d) es un espacio métrico y A es un subconjunto no vacío de X, definimos

$$d(x,A):=\inf\{d(x,a)|a\in A\}$$

- Si \overline{A} denota la cerradura de A, demuestre que $\overline{A} = \{x | d(x, A) = 0\}$.
- 3.5 Sea $f:[0,1] \longrightarrow (0,1)$ una función continua. Considere la ecuación g(x)=1, donde:

$$g(x) = 2x - \int_0^x f(t)dt.$$

- (a) Tiene esta ecuación alguna solución en [0,1]?
- (b) Tiene esta ecuación una solución única en [0,1]?