Admission Exam
 Department of Mathematics, Cinvestav. June 30, 2017

Nombre:

Instructions: For each question circle the correct answers. For each question there is at least one and possible more than one correct answer; fill all answers that apply.

Exam duration: 2 hours.

1. Which of the following sets is a subspace of \mathbb{Q}^{n} ?
(a) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}\right.$: where every x_{i} is an integer $\}$;
(b) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}\right.$: where x_{1} or x_{2} is zero $\}$;
(c) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}\right.$: where $\left.x_{1}=0\right\}$;
(d) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}^{n}\right.$: where $\left.3 x_{1}+4 x_{2}=1\right\}$.
2. Let V be the vector space of all continuous real valued functions on the interval $[0,1]$. The dimension of V is:
(a) finite;
(b) infinite.
3. If $T: U \rightarrow V$ is a linear transformation from U to V, then
(a) the kernel of T is a subspace of U;
(b) the kernel of T is a subspace of V;
(c) the image of T is a subspace of U;
(d) the image of T is a subspace of V;
(e) V is equal to the image of T if and only if $\operatorname{ker} T=\{0\}$.
4. Let P_{3} be the vector space of polynomials on R of degree at most 3. Let $D: P_{3} \rightarrow P_{3}$ be the differential operator defined by $D(p(t))=d p / d t$. Which of the following is the matrix of D with respect to the basis $\left\{1, t, t^{2}, t^{3}\right\} . ?$
(a) $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$;
(b) $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right)$;
(c) $\left(\begin{array}{llll}0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0\end{array}\right)$;
(d) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$;
5. Let A and B be two real $n \times n$ matrices. Let $\operatorname{tr}(A)$ be the trace of A. Which of the following statements always holds?
(a) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$;
(b) $\operatorname{tr}(A B)=\operatorname{tr}(A) \operatorname{tr}(B)$;
(c) $\operatorname{tr}(A B C)=\operatorname{tr}(A C B)$;
(d) $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$.
6. The matrix $\left(\begin{array}{ccc}1 / 9 & 8 / 9 & -4 / 9 \\ 4 / 9 & -4 / 9 & -7 / 9 \\ 8 / 9 & 1 / 9 & 4 / 9\end{array}\right)$ is
(a) upper triangular;
(b) orthogonal;
(c) symmetric;
(d) invertible.
7. The vectors $(1+i, 2 i), w=(1,1+i)$ are
(a) linearly dependent;
(b) linearly independent;
(c) linearly dependent over \mathbb{R};
(d) linearly dependent over \mathbb{C}.
8. Let u, v and w be linearly independent vectors. Then $u+v, u-v$ y $u-2 v+w$:
(a) are always linearly independent;
(b) are always linearly dependent;
(c) they may be linearly dependent or linearly independent.
9. Let V be vector space of all polynomials in t of degree at most n. The following are bases of V :
(a) $\left\{1, t, \ldots, t^{n}\right\}$;
(b) $\left\{1, t-1,(t-1)^{2}, \ldots,(t-1)^{n}\right\}$;
(c) $\left\{1+t, t+t^{2}, t^{2}+t^{3}, \ldots, t^{n-1}+t^{n}\right\}$.
10. Which of the following sets is a basis for the subspace of \mathbb{R}^{4} of all vectors orthogonal to $(0,1,1,1)$ and $(1,1,1,0)$?
(a) $\{(0,-1,1,0)\}$;
(b) $\{(1,0,0,0),(0,0,0,1)\}$;
(c) $\{(-2,1,1,-2),(0,1,-1,0)\}$
(d) $\{(1,-1,0,1),(-1,1,0,-1),(0,1,-1,0)\}$;
(e) $\{(0,0,0,0),(-1,1,0,-1),(0,1,-1,0)\}$.
11. Let V be the vector space of all continuous real valued functions on the interval $[-\pi, \pi]$ with interior product defined by $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) \mathrm{d} t$. Let $S=$ $\{1, \sin t, \cos t, \sin 2 t, \cos 2 t, \ldots\}$. Then
(a) S is orthogonal;
(b) S is orthonormal;
(c) S is a basis of V.
12. Let $V=\mathbb{Z}_{3}^{n}$ be a vector space over \mathbb{Z}_{3}. How many subspaces of dimension equal to 1 does V have?
(a) $\left(3^{n}-1\right)$;
(b) $3 n$;
(c) $\left(3^{n}-1\right) / 2$;
(d) None, V is not a vector space.
13. Find the characteristic polynomial of $\left(\begin{array}{ccc}1 & 3 & 0 \\ -2 & 2 & 1 \\ 4 & 0 & -2\end{array}\right)$.
(a) $t^{3}-t^{2}-2 t+4$;
(b) $t^{3}-t^{2}+2 t$;
(c) $t^{3}+t^{2}+2 t+4$;
(d) $t^{3}-t^{2}+2 t+4$.
14. A graph G is a pair (V, E) where $V=\{1, \ldots, n\}$ is a finite set of vertices, and E is a set of paris of these vertices; these are called edges. If $\{i, j\} \in E$, we say that i and j are adjacent. Let A be the $n \times n$ matrix where $A_{i j}=1$ if i is adjacent to j and $A_{i j}=0$ otherwise. Suppose that every vertex of G is adjacent to exactly d other vertices of G. Then:
(a) A is always invertible;
(b) A is always upper triangular;
(c) $(1, \ldots, 1)$ is an eigenvector of A.
15. Let $B=\left(\begin{array}{cc}1 & 3 \\ 2 & -4\end{array}\right)$; then
(a) B is diagonalizable with $P^{-1} B P=\left(\begin{array}{cc}-5 & 0 \\ 0 & 2\end{array}\right)$, and $P=\left(\begin{array}{cc}1 & 3 \\ -2 & 1\end{array}\right)$;
(b) B is diagonalizable with $P^{-1} B P=\left(\begin{array}{ll}5 & 0 \\ 0 & 2\end{array}\right)$, and $P=\left(\begin{array}{cc}-1 & 3 \\ 2 & 1\end{array}\right)$;
(c) B is diagonalizable with $P^{-1} B P=\left(\begin{array}{cc}-5 & 0 \\ 0 & -2\end{array}\right)$, and $P=\left(\begin{array}{cc}-1 & -3 \\ 2 & 1\end{array}\right)$;
(d) is not diagonalizable.
16. The series

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}} \text { y } \sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}:
$$

(a) are both convergent;
(b) are both divergent;
(c) the first diverges and the second converges;
(d) the first converges the second diverges.
17. Let $\left\{a_{n}\right\}$ be the sequence defined recursively as follows. $a_{1}=\sqrt{2}$ y $a_{n}=\sqrt{2+a_{n-1}}$. Then the sequence $\left\{a_{n}\right\}$
(a) diverges;
(b) converges to 2 ;
(c) converge to $\frac{2}{\sqrt{2}}$;
(d) converge to e.
18. Compute

$$
\lim _{x \rightarrow \infty} x^{2} \sin \left(\frac{1}{x}\right)
$$

(a) ∞;
(b) 1 ;
(c) 0 ;
(d) π.
19. Compute

$$
\lim _{x \rightarrow y} \frac{x^{n}-y^{n}}{x-y}
$$

(a) 0 ;
(b) ∞;
(c) $n y^{n-1}$;
(d) $n x^{n-1}$.
20. The function

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { for } x \neq 0 \\ 1 & \text { for } x=0\end{cases}
$$

(a) is discontinuous at $x=0$;
(b) is continuous at all values of x.
21. Find the derivative with respect to x of $\sqrt{x+\sqrt{x+\sqrt{x}}}$.
(a) $\frac{1}{\sqrt{x+\sqrt{x+\sqrt{x}}}}\left[1+\frac{1}{\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{\sqrt{x}}\right)\right]$;
(b) $\frac{1}{2 \sqrt{x+\sqrt{x+\sqrt{x}}}}\left[1+\frac{1}{2 \sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2 \sqrt{x}}\right)\right]$;
(c) $\frac{1}{\sqrt{x+\sqrt{x}}}\left[1+\frac{1}{\sqrt{x}}\left(1+\frac{1}{\sqrt{x}}\right)\right]$;
(d) $\frac{2}{\sqrt{x+\sqrt{x+\sqrt{x}}}}\left[1+\frac{2}{\sqrt{x+\sqrt{x}}}\left(1+\frac{2}{\sqrt{x}}\right)\right]$.
22. Find the maxima of the function $f(x)=3 \sqrt[3]{x^{2}}-x^{2}$.
(a) $x=2$ y $x=-2$;
(b) $x=0$;
(c) $x=\sqrt{2}$ y $x=-\sqrt{2}$;
(d) $x=1$ y $x=-1$.
23. How many inflection points are on the curve defined by $y=\frac{x+1}{x^{2}+1}$?
(a) 3 ;
(b) 0 ;
(c) 2 ;
(d) 1 .
24. Which of the following are asymptotes of the curve defined by $y=\frac{3 x}{2} \ln \left(e-\frac{1}{3 x}\right)$?
(a) $x=0$;
(b) $x=1 /(3 e)$;
(c) $y=\frac{3 x}{2}-\frac{1}{2 e}$;
(d) $y=-\frac{3 x}{2}-\frac{1}{2}$.
25. Compute the indefinite integral $\int \frac{1}{1+e^{x}} \mathrm{~d} x$.
(a) $\ln \left(1+e^{x}\right)+C$;
(b) $x+\ln \left(1+e^{x}\right)+C$;
(c) $x-\ln \left(1+e^{x}\right)+C$;
(d) $x-\ln \left(1-e^{x}\right)+C$.
26. Compute the indefinite integral $\int x \ln \left(1+\frac{1}{x}\right) \mathrm{d} x$.
(a) $\frac{1}{2}\left(x^{2}-1\right) \ln (x+1)-\frac{x^{2}}{2} \ln x+\frac{x}{2}+C$;
(b) $\frac{1}{2}\left(x^{2}+1\right) \ln (x-1)-\frac{x^{2}}{2} \ln x+\frac{x}{2}+C$;
(c) $\frac{1}{2}\left(x^{2}-1\right) \ln (x+1)+\frac{x^{2}}{2} \ln x+\frac{x}{2}+C$;
(d) $\frac{1}{2}\left(x^{2}+1\right) \ln (x-1)+\frac{x^{2}}{2} \ln x-\frac{x}{2}+C$.
27. Compute the area bounded by the parabolas $x=-2 y^{2}$ and $x=1-3 y^{2}$.
(a) $\sqrt{2}$;
(b) $\frac{4}{3}$;
(c) $\frac{3}{4}$;
(d) $\frac{\sqrt{2}}{2}$.
28. Compute the tangent plane to the surface $z=(\cos x)(\cos y)$ at the point $(0, \pi / 2,0)$.
(a) $z+y=\pi / 2$;
(b) $x+y=\pi / 2$;
(c) $z-y=\pi / 2$;
(d) $x-y=\pi / 2$.
29. Compute the volume of the region bounded by the surface $z=x^{2}+y$, and the planes $x=0, x=1, y=1, y=2$ and $z=0$.
(a) $\frac{11}{6}$;
(b) 2 ;
(c) $\frac{13}{6}$;
(d) $\sqrt{2}$.
30. Compute the matrix of partial derivatives of $f(x, y)=\left(x e^{y}+\cos y, x, x+e^{y}\right)$.
(a) $\left(\begin{array}{cc}e^{y} & x e^{y}-\sin y \\ x & e^{y}-\cos y \\ 1 & e^{y}\end{array}\right)$;
(b) $\left(\begin{array}{cc}x e^{y} & x e^{y}-\sin y \\ x & 0 \\ 1 & e^{y}\end{array}\right)$;
(c) $\left(\begin{array}{cc}e^{y} & e^{y}-\sin y \\ 1 & 0 \\ 1 & e^{y}\end{array}\right)$;
(d) $\left(\begin{array}{cc}e^{y} & x e^{y}-\sin y \\ 1 & 0 \\ 1 & e^{y}\end{array}\right)$.

