Admission Exam Department of Mathematics, Cinvestav. June 30, 2017

Nombre:

Instructions: For each question circle the correct answers. For each question there is at least one and possible more than one correct answer; fill all answers that apply.

Exam duration: 2 hours.

- 1. Which of the following sets is a subspace of \mathbb{Q}^n ?
 - (a) $\{(x_1, \ldots, x_n) \in \mathbb{Q}^n : \text{ where every } x_i \text{ is an integer } \};$
 - (b) $\{(x_1,\ldots,x_n)\in\mathbb{Q}^n: \text{ where } x_1 \text{ or } x_2 \text{ is zero}\};$
 - (c) $\{(x_1, \ldots, x_n) \in \mathbb{Q}^n : \text{ where } x_1 = 0\};$
 - (d) $\{(x_1, \ldots, x_n) \in \mathbb{Q}^n : \text{ where } 3x_1 + 4x_2 = 1\}.$
- 2. Let V be the vector space of all continuous real valued functions on the interval [0, 1]. The dimension of V is:
 - (a) finite;
 - (b) infinite.
- 3. If $T: U \to V$ is a linear transformation from U to V, then
 - (a) the kernel of T is a subspace of U;
 - (b) the kernel of T is a subspace of V;
 - (c) the image of T is a subspace of U;
 - (d) the image of T is a subspace of V;
 - (e) V is equal to the image of T if and only if ker $T = \{0\}$.

4. Let P_3 be the vector space of polynomials on R of degree at most 3. Let $D: P_3 \to P_3$ be the differential operator defined by D(p(t)) = dp/dt. Which of the following is the matrix of D with respect to the basis $\{1, t, t^2, t^3\}$?

 $(a) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \\ (b) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \\ (c) \begin{pmatrix} 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \\ (d) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix};$

- 5. Let A and B be two real $n \times n$ matrices. Let tr(A) be the trace of A. Which of the following statements always holds?
 - (a) $\operatorname{tr}(AB) = \operatorname{tr}(BA);$
 - (b) $\operatorname{tr}(AB) = \operatorname{tr}(A)\operatorname{tr}(B);$
 - (c) $\operatorname{tr}(ABC) = \operatorname{tr}(ACB);$
 - (d) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.

6. The matrix
$$\begin{pmatrix} 1/9 & 8/9 & -4/9 \\ 4/9 & -4/9 & -7/9 \\ 8/9 & 1/9 & 4/9 \end{pmatrix}$$
 is

- (a) upper triangular;
- (b) orthogonal;
- (c) symmetric;
- (d) invertible.

- 7. The vectors (1+i,2i), w = (1,1+i) are
 - (a) linearly dependent;
 - (b) linearly independent;
 - (c) linearly dependent over \mathbb{R} ;
 - (d) linearly dependent over \mathbb{C} .
- 8. Let u, v and w be linearly independent vectors. Then $u + v, u v \neq u 2v + w$:
 - (a) are always linearly independent;
 - (b) are always linearly dependent;
 - (c) they may be linearly dependent or linearly independent.
- 9. Let V be vector space of all polynomials in t of degree at most n. The following are bases of V:
 - (a) $\{1, t, \dots, t^n\};$
 - (b) $\{1, t-1, (t-1)^2, \dots, (t-1)^n\};$
 - (c) $\{1+t, t+t^2, t^2+t^3, \dots, t^{n-1}+t^n\}.$
- 10. Which of the following sets is a basis for the subspace of \mathbb{R}^4 of all vectors orthogonal to (0, 1, 1, 1) and (1, 1, 1, 0)?
 - (a) $\{(0, -1, 1, 0)\};$
 - (b) $\{(1,0,0,0), (0,0,0,1)\};$
 - (c) $\{(-2, 1, 1, -2), (0, 1, -1, 0)\}$
 - (d) $\{(1, -1, 0, 1), (-1, 1, 0, -1), (0, 1, -1, 0)\};$
 - (e) $\{(0,0,0,0), (-1,1,0,-1), (0,1,-1,0)\}.$
- 11. Let V be the vector space of all continuous real valued functions on the interval $[-\pi,\pi]$ with interior product defined by $\langle f,g \rangle = \int_{-\pi}^{\pi} f(t)g(t)dt$. Let $S = \{1, \sin t, \cos t, \sin 2t, \cos 2t, \ldots\}$. Then
 - (a) S is orthogonal;
 - (b) S is orthonormal;
 - (c) S is a basis of V.

- 12. Let $V = \mathbb{Z}_3^n$ be a vector space over \mathbb{Z}_3 . How many subspaces of dimension equal to 1 does V have?
 - (a) $(3^n 1);$
 - (b) 3n;
 - (c) $(3^n 1)/2;$
 - (d) None, V is not a vector space.

13. Find the characteristic polynomial of
$$\begin{pmatrix} 1 & 3 & 0 \\ -2 & 2 & 1 \\ 4 & 0 & -2 \end{pmatrix}$$
.

- (a) $t^3 t^2 2t + 4;$
- (b) $t^3 t^2 + 2t;$
- (c) $t^3 + t^2 + 2t + 4;$
- (d) $t^3 t^2 + 2t + 4$.
- 14. A graph G is a pair (V, E) where $V = \{1, \ldots, n\}$ is a finite set of vertices, and E is a set of paris of these vertices; these are called *edges*. If $\{i, j\} \in E$, we say that i and j are adjacent. Let A be the $n \times n$ matrix where $A_{ij} = 1$ if i is adjacent to j and $A_{ij} = 0$ otherwise. Suppose that every vertex of G is adjacent to exactly d other vertices of G. Then:
 - (a) A is always invertible;
 - (b) A is always upper triangular;
 - (c) $(1, \ldots, 1)$ is an eigenvector of A.

15. Let
$$B = \begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix}$$
; then

(a) *B* is diagonalizable with
$$P^{-1}BP = \begin{pmatrix} -5 & 0 \\ 0 & 2 \end{pmatrix}$$
, and $P = \begin{pmatrix} 1 & 3 \\ -2 & 1 \end{pmatrix}$;
(b) *B* is diagonalizable with $P^{-1}BP = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix}$, and $P = \begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$;

- (c) *B* is diagonalizable with $P^{-1}BP = \begin{pmatrix} -5 & 0 \\ 0 & -2 \end{pmatrix}$, and $P = \begin{pmatrix} -1 & -3 \\ 2 & 1 \end{pmatrix}$;
- (d) is not diagonalizable.

16. The series

$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n} \ge \sum_{n=1}^{\infty} \frac{3^n n!}{n^n} :$$

- (a) are both convergent;
- (b) are both divergent;
- (c) the first diverges and the second converges;
- (d) the first converges the second diverges.
- 17. Let $\{a_n\}$ be the sequence defined recursively as follows. $a_1 = \sqrt{2}$ y $a_n = \sqrt{2 + a_{n-1}}$. Then the sequence $\{a_n\}$
 - (a) diverges;
 - (b) converges to 2;
 - (c) converge to $\frac{2}{\sqrt{2}}$;
 - (d) converge to e.
- 18. Compute

$$\lim_{x \to \infty} x^2 \sin\left(\frac{1}{x}\right).$$

- (a) ∞ ;
- (b) 1;
- (c) 0;
- (d) π .
- 19. Compute

$$\lim_{x \to y} \frac{x^n - y^n}{x - y}$$

- (a) 0;
- (b) ∞ ;
- (c) $ny^{n-1};$
- (d) nx^{n-1} .

20. The function

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{for } x \neq 0, \\ 1 & \text{for } x = 0 \end{cases}$$

- (a) is discontinuous at x = 0;
- (b) is continuous at all values of x.

21. Find the derivative with respect to x of $\sqrt{x + \sqrt{x + \sqrt{x}}}$.

(a)
$$\frac{1}{\sqrt{x+\sqrt{x+\sqrt{x}}}} \left[1 + \frac{1}{\sqrt{x+\sqrt{x}}} \left(1 + \frac{1}{\sqrt{x}} \right) \right];$$

(b)
$$\frac{1}{2\sqrt{x+\sqrt{x+\sqrt{x}}}} \left[1 + \frac{1}{2\sqrt{x+\sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}} \right) \right]$$

(c)
$$\frac{1}{\sqrt{x+\sqrt{x}}} \left[1 + \frac{1}{\sqrt{x}} \left(1 + \frac{1}{\sqrt{x}} \right) \right];$$

(d)
$$\frac{2}{\sqrt{x+\sqrt{x+\sqrt{x}}}} \left[1 + \frac{2}{\sqrt{x+\sqrt{x}}} \left(1 + \frac{2}{\sqrt{x}} \right) \right].$$

22. Find the maxima of the function $f(x) = 3\sqrt[3]{x^2} - x^2$.

(a) x = 2 y x = -2; (b) x = 0; (c) $x = \sqrt{2}$ y $x = -\sqrt{2}$; (d) x = 1 y x = -1.

23. How many inflection points are on the curve defined by $y = \frac{x+1}{x^2+1}$?

- (a) 3;
- (b) 0;
- (c) 2;
- (d) 1.

24. Which of the following are asymptotes of the curve defined by $y = \frac{3x}{2} \ln \left(e - \frac{1}{3x} \right)$?

;

(a) x = 0;(b) x = 1/(3e);(c) $y = \frac{3x}{2} - \frac{1}{2e};$ (d) $y = -\frac{3x}{2} - \frac{1}{2}.$

25. Compute the indefinite integral $\int \frac{1}{1+e^x} dx$.

(a) $\ln(1 + e^x) + C;$ (b) $x + \ln(1 + e^x) + C;$ (c) $x - \ln(1 + e^x) + C;$ (d) $x - \ln(1 - e^x) + C.$ 26. Compute the indefinite integral $\int x \ln \left(1 + \frac{1}{x}\right) dx$.

- (a) $\frac{1}{2}(x^2-1)\ln(x+1) \frac{x^2}{2}\ln x + \frac{x}{2} + C;$
- (b) $\frac{1}{2}(x^2+1)\ln(x-1) \frac{x^2}{2}\ln x + \frac{x}{2} + C;$
- (c) $\frac{1}{2}(x^2-1)\ln(x+1) + \frac{x^2}{2}\ln x + \frac{x}{2} + C;$
- (d) $\frac{1}{2}(x^2+1)\ln(x-1) + \frac{x^2}{2}\ln x \frac{x}{2} + C.$

27. Compute the area bounded by the parabolas $x = -2y^2$ and $x = 1 - 3y^2$.

- (a) $\sqrt{2};$
- (b) $\frac{4}{3}$;
- (c) $\frac{3}{4}$;
- (d) $\frac{\sqrt{2}}{2}$.

28. Compute the tangent plane to the surface $z = (\cos x)(\cos y)$ at the point $(0, \pi/2, 0)$.

- (a) $z + y = \pi/2;$
- (b) $x + y = \pi/2;$
- (c) $z y = \pi/2;$
- (d) $x y = \pi/2$.
- 29. Compute the volume of the region bounded by the surface $z = x^2 + y$, and the planes x = 0, x = 1, y = 1, y = 2 and z = 0.
 - (a) $\frac{11}{6}$;
 - (b) 2;
 - (c) $\frac{13}{6}$;
 - $(0)_{6},$
 - (d) $\sqrt{2}$.

30. Compute the matrix of partial derivatives of $f(x, y) = (xe^y + \cos y, x, x + e^y)$.

(a)
$$\begin{pmatrix} e^{y} & xe^{y} - \sin y \\ x & e^{y} - \cos y \\ 1 & e^{y} \end{pmatrix};$$

(b)
$$\begin{pmatrix} xe^{y} & xe^{y} - \sin y \\ x & 0 \\ 1 & e^{y} \end{pmatrix};$$

(c)
$$\begin{pmatrix} e^{y} & e^{y} - \sin y \\ 1 & 0 \\ 1 & e^{y} \end{pmatrix};$$

(d)
$$\begin{pmatrix} e^{y} & xe^{y} - \sin y \\ 1 & 0 \\ 1 & e^{y} \end{pmatrix}.$$