Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

July 10, 1998

1. Linear Algebra

1.1 Let V the subspace of \mathbb{R}^{4} that is made of all of the solutions of the following system of homogenous linear equations:

$$
\begin{array}{r}
2 x-y+2 z+w=0 \\
x+y+z-w=0 \\
2 x+4 z-w=0
\end{array}
$$

Determine the basis for V .
1.2 Consider the following matrix:

$$
A=\left(\begin{array}{rrrr}
2 & -1 & 2 & 1 \\
1 & 1 & 1 & -1 \\
1 & -8 & 1 & -8
\end{array}\right)
$$

Find a basis for the image of the linear transformation $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ defined by A.
1.3 Consider $T(x . y, z)=(3 x+2 y+4 z, 2 x+2 z, 4 x+2 y+3 z)$.
a) Find the matrix representation of T with respect to the canonical basis.
b) Determine the appropriate values of T in a basis of subspaces of corresponding appropriate vectors.

2. Calculus

2.1 Calculate the limit

$$
\lim _{x \rightarrow 1} \frac{x^{3}-2 x+1}{2 x^{3}-3 x^{2}+5 x-4}
$$

2.2 Express if the following series converge and why.

$$
\sum_{i=1}^{\infty} \frac{1}{n} \quad y \quad \sum_{i=1}^{\infty} \frac{1}{n^{2}}
$$

2.3 Consider $g:(1, \infty) \longrightarrow \mathbb{R}$ given by

$$
g(x)=\int_{1}^{x^{3}} \cos (1+\sqrt{t}) d t
$$

Calculate $g^{\prime}(x)$

3. Optional problems

3.1 Let V be the vector space of matrices of order $\mathrm{n} \times \mathrm{n}$ with real entries and with usual matrix operations. Consider:

$$
W=\left\{A \in V \mid A^{t}=-A\right\}
$$

where At is the transverse of A . Is W a vector subpace of V ?
3.2 Consider $f_{n}:(0, \infty) \longrightarrow \mathbb{R}$ given by $f_{n}(x)=x^{n}$, with $n=\ldots,-2,-1,0,1,2, \ldots$. What values of n is f_{n} uniformly continuous?
3.3 Let (X, \bar{d}) a metric space and defined for $x, y \in X$ $\bar{d}(x, y):=\min \{1, d(x, y)\}$.

Prove that \bar{d} is a metric on X .
3.4 Let $\left\{V_{i}\right\}_{i=1}^{\infty}$ be a succession of open sets in \mathbb{R}^{n}. Is $\bigcap_{i=1}^{\infty} V_{i}$ an open set in \mathbb{R}^{n}.
3.5 Prove that the quotient group \mathbb{C}^{*} / S^{1} is isomorphic to \mathbb{R}^{+}, where $\mathbb{C}^{*}=\{z \in \mathbb{C}: z \neq 0\}, \mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ and $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ are considered as multiplicative groups.

