Centre for Research and Advanced Study at IPN Department of Mathematics

Master's Degree Program Admission Examination

July, 2004

1. Linear Algebra

1.1 Find a square matrix 4×4 whose fourth potency A^{4} be the zero matrix, but such that none of its other potencies A, A^{2} and A^{3} be the zero matrix
1.2 Consider the compound set for all polynomials with real coefficients nad grade greater or equals to two. Determine if this set is a vector space.
1.3 Givren the following vectors $v_{1}=(3,5,11)$ and $v_{2}=(2,4,8)$ in the Euclidian space \mathbf{R}^{3}. Calculate a unitary vector $v_{3} \in \mathbf{R}^{3}$ that is orthogonal to v 1 and to v 2 s well.

2. Calculus

2.1 Consider the succession o real numbers $\left\{x_{n}\right\}_{n=0}^{\infty}$ recursively defined by the equation $x_{n+1}=x_{n}^{2}+x_{n}-3$, for $n \geq 0$. Determine the initial values x_{0} that you need to get a constant succession $\left\{x_{n}\right\}_{n=0}^{\infty}$.
2.2 Calculate the derivative $\frac{d f(t)}{d t}$ of the following function

$$
f(t)=\int_{0}^{t} \frac{e^{s t}}{s} d s
$$

2.3 Calculate the general solution for the following differential equation

$$
y F(x y) d x=x G(x y) d y
$$

3. Optional problems

3.1 Demonstrate that the following series converges

$$
\sum_{k=0}^{\infty} \frac{1}{k^{2}}
$$

3.2 Determine the conformal transformation that sends the superior semi planar $\Im(z)>0_{\text {in the infinite strip }} 0<\Im(z)<\pi$.
3.3 Calculate what the fundamental group is for the projective planar $\mathbf{R} \mathbf{P}^{2}$.
3.4 Calculate the numerical value of the following integral:

$$
2 \pi i \int_{-\infty}^{\infty} \frac{d z}{z^{4}+1}
$$

