Centre for Research and Advanced Study at IPN Department of Mathematics

Master's Degree Program Admission Examination

July, 2004

1. Linear Algebra

- 1.1 Find a square matrix 4 x 4 whose fourth potency A^4 be the zero matrix, but such that none of its other potencies A, A^2 and A^3 be the zero matrix
- 1.2 Consider the compound set for all polynomials with real coefficients nad grade greater or equals to two. Determine if this set is a vector space.

1.3 Given the following vectors $v_1 = (3, 5, 11)_{\text{and}} v_2 = (2, 4, 8)$ in the Euclidian space \mathbb{R}^3 . Calculate a unitary vector $v_3 \in \mathbb{R}^3$ that is orthogonal to v1 and to v2 s well.

2. Calculus

2.1 Consider the succession o real numbers $\{x_n\}_{n=0}^{\infty}$ recursively defined by the equation $x_{n+1} = x_n^2 + x_n - 3$, for $n \ge 0$. Determine the initial values x_0 that you need to get a constant succession $\{x_n\}_{n=0}^{\infty}$.

2.2 Calculate the derivative $\frac{df(t)}{dt}$ of the following function

$$f(t) = \int_0^t \frac{e^{st}}{s} ds$$

2.3 Calculate the general solution for the following differential equation

$$yF(xy)dx = xG(xy)dy$$

3. Optional problems

3.1 Demonstrate that the following series converges

$$\sum_{k=0}^{\infty} \frac{1}{k^2}$$

3.2 Determine the conformal transformation that sends the superior semi planar $\Im(z)>0$ in the infinite strip $0<\Im(z)<\pi$.

3.3 Calculate what the fundamental group is for the projective planar ${I\!RP^2}$. 3.4 Calculate the numerical value of the following integral:

$$2\pi i \int_{-\infty}^{\infty} \frac{dz}{z^4 + 1}$$