Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

February 11, 2002

Linear Algebra

1.1 What values for a in the following system:
a) have no solutions
b) have accurately a solution,
c) have countless solutions

$$
\begin{aligned}
x+2 y-3 z & =4 \\
3 x-y+5 z & =2 \\
4 x+y+\left(a^{2}-14\right) z & =a+2
\end{aligned}
$$

1.2 Let $M_{n}(\mathbb{R})$ is the vector space of all real matrices $\mathrm{n} \times \mathrm{n}$ and let V be the subspace $\dot{M}_{n}(\mathbb{R})$ that is made of all matrices of outline zero.
a) Calculate the dimension of V
b) Find the basis for V.
1.3 Let $v_{1}=(1,-4,7), v_{2}=(2,5,-8)$ and $v_{3}=(3,6,9)$ be 3 vectors in \mathbb{R}^{3}. Use the Gram-Schimidt process to find an orthonormal basis of \mathbb{R}^{3} from $v 1, v 2$ and $v 3$.

2. Calculus

2.1 Consider the function $F:[0,+\infty) \longrightarrow \mathbb{R}$ given by

$$
F(x)=\int_{0}^{x} t^{2} e^{t^{2}} d t
$$

a) Find the continuity points of F.
b) Which of those points is F differentiable?
c) Calculate $\mathrm{F}^{\prime}(2002)$
2.2 Let x be a different positive real number of 1 and P is a prime number. Mention the cases where the following series are convergent:

$$
\sum_{n=0}^{\infty} \frac{1}{x^{n p}}
$$

2.3 Let $K \in \mathbb{R}^{3}$ the ellipsoid given by the equation $\frac{x 2}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ when $\mathrm{a}, \mathrm{b}, \mathrm{c}>0$. Given an arbitrary point of $(x, y, z) \in K_{\text {in the first }}$ octant, consider the parallelepiped of vertices $(\pm x, \pm y, \pm z)$ inscribed in K , with volume $\mathrm{V}=8 \mathrm{xyz}$. Find the maximum value of V . Suggestion: V is the maximum value if and only if V^{2} is the maxima value.

3. Optional problems

3.1 For $n \geq 1$, let $D^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ be the unitary disk in \mathbb{R}^{n} and denoted by S^{n-1} to its borderline ∂D^{n}. Prove that $D^{n} / \partial D^{n}$ is homomorphical to S^{n}.
3.2 Give an example of an infinite group G but such that all its torsion elements. Find the image of the real straight line under the transformation $f: \mathbb{C} \longrightarrow \mathbb{C}$ given by $f(z)=\frac{z-i}{z=i}$.

