Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

January 22, 2001

1. Linear Algebra

1.1 Consider the matrix:

$$A = \left(\begin{array}{rrrr} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{array}\right)$$

- a) Determine the characteristic polynomial of A.
- b) Is A similar to a diagonal matrix?
- 1.2 Let $p(x) = a_n x^n + \ldots + a_0$ be a polynomial of grade $n \ge 1$ with $a_0 \ne 0$ and let A be a square matrix. Prove that if p(A) = 0, then A is reversible.
- 1.3 Let V be the subspace of \mathbb{R}^4 that is made up of al of the solutions of the following system of homogenous linear equations

$$2x - y + 2z + w = 0$$

$$x + y + z - w = 0$$

$$2x - 4z - w = 0$$

Determine a basis for V.

2. Calculus

2.1 Let $\pi_1: \mathbb{R}^2 \longrightarrow \mathbb{R}$ the projection $\pi_1(x, y) = x$. Is π_1 a closed function?

2.2 Let $g:\mathbb{R}\longrightarrow\mathbb{R}$ given by

$$g(x) = \int_x^{x^2} \cos(1+t)dt$$

Calculate g'(x)

2.3 Determine the dimensions of the rectangular prism with square basis of the minimal surface among all that have a fixed volume V.

3. Optional Problems

3.1 Let P be a set of solutions in \mathbb{R}^n of he system of linear inequalities:

$$a_{11}x_1 + \ldots + a_{1n}x_n \le b_1$$

$$\vdots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n \le b_m$$

where a_{ij} and b_i are real numbers for all i, j. Suppose that $P \neq \theta$. Is P a closed set? Is P convex?

- 3.2 Which of the following statements are right? Justify your answer.
 - a) Every infinite cyclical group is isomorphic to the group $(\mathbb{Z}+)$ of the integers with the sum.
 - b) Two finite abelian groups of the same order are isomorphic.
- 3.3 Prove that any of two convex open sets of real straight line are homomorphic. Is this statement true if you change the real straight line for \mathbb{R}^n when $n \ge 2$?. Justify your answer.
- 3.4 Prove that if a holomorphic function

 $f:\mathbb{C}\longrightarrow\mathbb{C}$ satisface $|f(z)|\leq C|z|^n$

For every $z \in \mathbb{C}$ where C is a positive constant and n is some positive integer, then f is a polynomial of grade $\leq = n$.