Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

J anuary, 2005

1. Linear Algebra

1.1 Let $\mathbf{M}_{2}(\mathbf{R})$ be the vector space formed by all square matrices [2 $\times 2$]; also consider the linear transformation
$T: \mathbf{M}_{2}(\mathbf{R}) \longrightarrow \mathbf{M}_{2}(\mathbf{R})_{\text {given by }} T(A)={ }_{\text {transverse of }}$ A. Calculate a basis for $M_{2}(\mathbf{R})$ such that the transformation of T is represented by a diagonal matrix. What are the possible values for the diagonal?
1.2 Demonstrate that the compound space for all polynomials (with sum and standard multiplication) is a vector space. Also, determine what the dimension of the vector space of polynomials is.
1.3 Find a unitary vector on \mathbb{R}^{3} that is orthogonal to vectors [2,4,8] and [3, 9, 27]

2. Calculus

2.1 Calculate the derivative of the function $\int_{0}^{x} e^{(x+t)^{8}} d t$, with respect to x .
2.2 Provide an example of a non-bound succession of real numbers $\left\{x_{n}\right\}$ with at least two accumulation points.
2.3 Demonstrate Euler's theorem on homogeneous functions. A function $F(x, y, z)$ is homogenous of grade p if for any parameter $\lambda_{\text {you have: }}$
$F(\lambda x, \lambda y, \lambda z)=\lambda^{p} F(x, y, z)$.
Demonstrate that if $F(x, y, z)$ is homogenous of grade p , then:

$$
x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}+z \frac{\partial F}{\partial z}=p F(x, y, z)
$$

3. Optional Problems

3.1 Demonstrate that each periodic rational function $\frac{p(z)}{q(z)}$ is constant.
3.2 Calculate what the fundamental group of the projective planar is RP^{2}.
3.3 Determine if there are non-abelian groups with a prime number of elements.
3.4 Let X be a locally connected topological space. Consider an open U of X and a connected component C of U . Demonstrate that $U \cap \operatorname{FrC}=\emptyset$.

