Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

J anuary 7, 2001

1. Linear Algebra

1.1 Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x-y, y-z)$. Find the nucleus, nullity and range of T .
1.2 Let P_{2} be the vector space of real polynomials of less grade or equals to

$$
2: P_{2}=\left\{a+b x+c x^{2} \mid a, b, c \in \mathbb{R}\right\} \text {. The usual or canonical basis of } \mathrm{P}_{2} \text { is }
$$ given by the polynomials $1, \mathrm{x}, \mathrm{x}^{2}$.

a) Find the basis of P_{2} different that the usual and express the polynomial $a+b x+c x^{2}$ as a linear combination of this basis.
b) Calculate the change of basis matrix.
c) What is the dimension of dual space of P_{2} ?
1.3 Let $t_{1}, t_{2}, t_{3} \in \mathbb{R}_{\text {be three different real numbers and } \mathrm{P}_{2} \text { as the previous }}$ problem. For I = 1, 2, 3 be

$$
T_{i}: P_{2} \longrightarrow \mathbb{R}
$$

The function given by $T_{i}(p)=p\left(t_{i}\right)$ that is, the evaluation of the polynomial p on ti.
a) Prove that the functions $T_{1} T_{2}$ and T_{3} are linear transformations.
b) Prove that the functions $T_{1} T_{2}$ and T_{3} are linearly independent in the dual space of P_{2} and therefore a basis for the dual space.

2. Calculus

2.1 Let $a, b \in \mathbb{R}$ such $a>2 b>0$ and be $F:\left[0, \frac{\pi}{3}\right] \longrightarrow \mathbb{R}$ the function given by:

$$
F(x)=\int_{0}^{\pi x} \frac{d \theta}{a \cos \theta-b \operatorname{sen} \theta}
$$

Find a critical point of the function $F(x)-\frac{\sqrt{2 \pi}}{(a-b)} x$ in the open interval $\left(0, \frac{(\pi)}{3}\right)$
2.2 Tell if the following series are convergent:
(a) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{n^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \operatorname{sen}(\pi / n)$

Prove that it is impossible to place $x=f(x) g(x)$ where f and g are derivable and $f(0)=g(0)=0$

3. Optional Problems

3.1 Let $f: X \longrightarrow Y$ a continuous bijection between two topological spaces. Prove that if X is compact and Y is Hausdorff then f is homeomorphism.
3.2 Prove that if a in group G ever item is it own reserve, then G is abelian.
3.3 Suppose that $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ has partial derivatives or order two. Tell which of the following identities are true:
(a) $\nabla \times(\nabla f)=\overrightarrow{0}$
(b) $\nabla \cdot(\nabla \times f)=0$
(c) $\nabla \cdot(\nabla f)=0$
(d) $\nabla \times(\nabla \cdot f)=\overrightarrow{0}$
3.4 Calculate the following integral $\int_{-\infty}^{\infty} \frac{d x}{x^{6}+1}$

