Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

J anuary 31, 2008

1. Linear Algebra

1.1 Let V be a vector space and $T: V \rightarrow V_{\text {a }}$ linear transformation such that $T^{2}=I_{V}$, where I_{V} denotes an identity transformation of V on V . Consider the following sets:

$$
H_{1}=\{v \in V \mid T(v)=v\}, H_{2}=\{v \in V \mid T(v)=-v\}
$$

Demonstrate that H_{1} and H_{2} are subspaces of V such that $V=H_{1} \oplus H_{2}$.
1.2 Let $T(x, y, z)=(3 x+2 y+4 z, 2 x+2 z, 2 x+2 y+3 z)_{\text {be a }}$ linear transformation of \mathbb{R}^{3} on \mathbb{R}^{3}.
(i) Find the matrix representation of T with respect of the canonical basis of \mathbb{R}^{3}.
(ii) Determine the appropriate values of T and a basis for the subspaces of appropriate vectors corresponding to the eigen values.
1.3 Let V be the vector space of all matrices of 3×3 and let A be the following diagonal matrix:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Calculus

2.1 Consider the following function:

$$
F(x)=\int_{0}^{2} \operatorname{sen}\left((x+t)^{2}\right) d t
$$

Calculate $\left.\frac{d F(x)}{d x}\right|_{x=0}$, the derivative of $F(x)_{\text {with respect to } \mathrm{x} \text { on zero. }}$
2.2 Which number is greater 3^{π} or π^{3} ?

Note: You can not use a calculator and you need to provide proof
2.3 You have a circle and a square of areas $A 1$ and $A 2$, respectively.
Determine the possible maximum of $A 1+A 2$, subject to the condition
that the sum of the perimeters is constant and equals to 10 .

3. Optional problems

3.1 Provide an example of demonstrate that there are no examples for each of the following groups:

1) A non-abelian group
2) A finite, non-cyclical abelian group
3) An infinite group with subgroups of index five,
4) A group G with a subgroup H non-normal
5) A group G with a subgroup H of index two that is not normal
3.2 Demonstrate that for each integer $x \in \mathbb{Z}$ the number $x^{3}-x$ is a multiple of 3 . Is it true that $x^{4}-x$ is a multiple of 4 for each $x \in \mathbb{Z}$?
3.3 Find the number of roots of $z^{4}+5 z+1$ inside of the unitary disc.
3.4 Demonstrate that the following limit exists:

$$
\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \frac{1}{k}-\ln (N)
$$

