Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination
J anuary 10, 2000

1. Linear Algebra

1.1 Calculate the reverse of the following matrix.

$$
A=\left(\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

1.2 Consider the following matrix

$$
A=\left(\begin{array}{rrrr}
2 & -1 & 2 & 1 \\
1 & 1 & 1 & -1 \\
1 & -8 & 1 & -8
\end{array}\right)
$$

a) Find the basis for the null space of A.
b) Find a basis for the column space of A.
c) Determine the unit of A and the range of A are the dimension of the spaces in the previous parenthesis.
1.3 Let A be a real reversible matrix. Prove that there are real symmetrical matrices defined positive and Q orthogonal (i.e. $Q^{t}=1$) such $A=P Q$.
(Suggestion: Use the properties of $A A^{t}$)

2. Calculus

2.1 Find the derivative of the function F defined in [0,1] for each of the following definitions:
(a) $F(x)=\int_{0}^{x^{2}}\left(1+t^{3}\right)^{-1} d t$,
(b) $F(x)=\int_{x^{2}}^{x} \sqrt{1+t^{2} d t}$,
2.2 Determine the integer values of p that converge in the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.
2.3 Calculate the integral of the line $F(x, y)=\left(x^{2}, x y\right)$ along the trajectory of the origin at the point $(1,1)$ for the parabola $y=x^{2}$.

3. Optional problems

3.1 Prove that the quotient group \mathbb{C}^{*} / S^{1} is isomorphic to \mathbb{R}^{+}where $\mathbb{C}^{*}=\{z \in \mathbb{C}: z \neq 0\}, \mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ and $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ considered as multiplicative. Furthermore, provide a geometric interpretation of classes of equivalency of the quotient group \mathbb{C}^{*} / S^{1}.
3.2 Prove that any finite group of prime order is cyclical.
3.3 Find, except isomorphism, all groups of order 6.
3.4 Prove that a space of Hilbert of infinite dimension, the closed unit-ball is not compact.
3.5 Let $f: U \longrightarrow \mathbb{C}$ a defined holomorphic function on an open U of C. Prove that the real and imaginary parts of F are harmonic functions.

