Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

J anuary 15, 2009

1. Linear Algebra

1.1 Let S be the vector subspace of $M n \times n$ (the vector space of the real matrices of $n \times n$) generated by all matrices of the form $A B-B A$ in $M_{n \times n}(\mathbb{R})$. Prove that:

$$
\operatorname{dim}(S)=n^{2}-1
$$

1.2 Let $P, Q \in M_{n \times n}(\mathbb{R})$ be such $P^{2}=P, Q^{2}=Q$ and $I_{n \times n}-P-Q$ a reversible matrix. Prove that P and Q have the same range.
1.3 Let $A \in M_{n \times n}(\mathbb{R})$ be such that $A^{3}=I_{n \times n}$ and $A \neq I_{n \times n}$.
a) Which of the following eigenvalues of A ?
b) Give an example of a matrix that satisfies these conditions.

2. Calculus

2.1 Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a real function, such $f(1)=1$ and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

Prove that

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and that is minor than $1+\frac{\pi}{4}$.
Note: $f^{\prime}(x)$ is the derivative of F in x .
2.2 Let $f, g:[0,1] \rightarrow[0, \infty)$ continuous functions that satisfy :

$$
\sup _{0 \leq x \leq 1} f(x)=\sup _{0 \leq x \leq 1} g(x)
$$

Prove that $t \in[0,1]$ exist such as $f(t)^{2}+3 f(t)=g(t)^{2}+3 g(t)$.
2.3 Prove that as an counter example for each of the following sentences:
a) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be real functions such

$$
\lim _{t \rightarrow a} g(t)=b \text { y } \lim _{t \rightarrow b} f(t)=c
$$

Then $\lim _{t \rightarrow a} f(g(t))=c$
b) if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and U an open set of \mathbb{R}, then $f(U)$ is an open set of \mathbb{R}.

3. Optional Problems

3.1 Let $\mathrm{n}>1$ be an integer. Prove that the sum:

$$
1+\frac{1}{2}+\cdots+\frac{1}{n}
$$

it is not an integer
3.2 Let $\mathbb{Z}[x]$ be the ring of polynomials of a variable on the integers and

$$
I=\left\langle 5, x^{2}+2\right\rangle
$$

the ideal of $\mathbb{Z}[x]$ generated by 5 and $x^{2}+2$. Prove that the ideal I is a maximal ideal.
3.3 Calculate the following integral:

$$
I=\frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{\operatorname{sen} 4 z}
$$

where the direction of integration is counter-clockwise.
3.4 Calculate the following integral:

$$
\int_{0}^{2 \pi} e^{\left(e^{i \theta}-i \theta\right)} d \theta
$$

