Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

August 20, 1999

1. Linear Algebra

- 1.1 Let A be a matrix of order n and denote by A' its transpose. Prove that if A' = -A and n is an odd number then det A = 0.
- 1.2 Let W be the subspace of \mathbb{R}^3 generated by

$$\mathcal{B} = \{ \alpha_1 = (2, 1, 1), \alpha_2 = (-1, 2, 0) \\ \alpha_3 = (7, -4, 2), \alpha_4 = (1, 1, 1) \}.$$

Determine a basis for W contained in ${\cal B}.$

1.3 Consider the following matrix:

$$A = \left(\begin{array}{rrr} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{array}\right)$$

Determine the appropriate values for A and a basis for the subspaces of corresponding appropriate vectors.

2. Calculus

2.1 Graph the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x) = x^3 - 3x$ noting local extremes, inflexion points and intervals within concavity or convexity.

2.2 Let
$$g:(1,\infty)\longrightarrow \mathbb{R}$$
 be given by

$$g(x) = \int_1^{x^3} \cos\left(1 + \sqrt{t}\right) dt$$

Calculate: g'(x).

2.3 Determine if the following series is convergent and justify your answer:

$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

3. Optional problems

- 3.1 Let ${Vi}_{i=l}^{\infty}$ be an arbitrary succession of open sets in \mathbb{R}^n . Is $\bigcap_{1=l}^{\infty} Vi$ always an open set in \mathbb{R}^n . Justify your answer.
- 3.2 Let $f_n : (0, \infty) \longrightarrow \mathbb{R}$ be given by $f_n(x) = x^n, \operatorname{con} n = \dots, -2, -1, 0, 1, 2, \dots$

What values for n make f_n uniformly continuous? Justify your answer.

3.3 Let (X, d) a metric space and define for $x,y\in X$

$$\hat{d}(x,y) := \min\{1, d(x,y)\}$$

Prove that $\hat{d}es$ is a metric on X that determines the same open sets.

3.4 Let $(\mathbb{Z}_n, +)$ be the additive group for the whole integer module n. Is the Cartesian product $\mathbb{Z}_2 \times \mathbb{Z}_4$ isomorphic to \mathbb{Z}_8 ?. Justify your answer.