Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

August 20, 1999

1. Linear Algebra

1.1 Let A be a matrix of order n and denote by A^{\prime} its transpose. Prove that if A^{\prime} $=-\mathrm{A}$ and n is an odd number then $\operatorname{det} \mathrm{A}=0$.
1.2 Let W be the subspace of \mathbb{R}^{3} generated by

$$
\begin{aligned}
\mathcal{B}= & \left\{\alpha_{1}=(2,1,1), \alpha_{2}=(-1,2,0)\right. \\
& \left.\alpha_{3},=(7,-4,2), \alpha_{4}=(1,1,1)\right\}
\end{aligned}
$$

Determine a basis for w contained in \mathcal{B}.
1.3 Consider the following matrix:

$$
A=\left(\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

Determine the appropriate values for A and a basis for the subspaces of corresponding appropriate vectors.

2. Calculus

2.1 Graph the function $f: \mathbb{R} \longrightarrow \mathbb{R}_{\text {given by }} f(x)=x^{3}-3 x$ noting local extremes, inflexion points and intervals within concavity or convexity.
2.2 Let $g:(1, \infty) \longrightarrow \mathbb{R}_{\text {be given by }}$

$$
g(x)=\int_{1}^{x^{3}} \cos (1+\sqrt{t}) d t
$$

Calculate: $g^{\prime}(x)$.
2.3 Determine if the following series is convergent and justify your answer:

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{n!}
$$

3. Optional problems

3.1 Let $\{V i\}_{i=l}^{\infty}$ be an arbitrary succession of open sets in \mathbb{R}^{n}. Is $\bigcap_{1=l}^{\infty}$ Vi always an open set in \mathbb{R}^{n}. Justify your answer.
3.2 Let $f_{n}:(0, \infty) \longrightarrow \mathbb{R}_{\text {be given by }}$ $f_{n}(x)=x^{n}$, con $n=\ldots,-2,-1,0,1,2, \ldots$. What values for n make f_{n} uniformly continuous? J ustify your answer.
3.3 Let (X, d) a metric space and define for $x, y \in X$

$$
\hat{d}(x, y):=\min \{1, d(x, y)\}
$$

Prove that \hat{d} es is a metric on X that determines the same open sets.
3.4 Let $\left(\mathbb{Z}_{n},+\right)$ be the additive group for the whole integer module n. Is the Cartesian product $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ isomorphic to \mathbb{Z}_{8} ?. Justify your answer.

