Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

August 17, 1998

1. Linear Algebra

1.1 Consider the matrix:

$$
A=\left(\begin{array}{rrrr}
2 & -1 & 7 & 1 \\
1 & 2 & -4 & 1 \\
1 & 0 & 2 & 1
\end{array}\right)
$$

Find the basis for the image of the linear transformation $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ defined by A .
1.2 Consider the matrix:

$$
A=\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

Determine appropriate values for A and a basis for subspaces of corresponding appropriate values.
1.3 Use elementary operations to determine the matrix inverse.

$$
A=\left(\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

2. Calculus

2.1 Say if the following series converge or not and why.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \quad y \quad \sum_{n=0}^{\infty} \frac{2^{n}}{n^{!}}
$$

2.2 Find the derivative of the function F on $[0,1]$ like:
(a) $F(x)=\int_{0}^{x}\left(\sin t^{2}\right) d t$,
(b) $\quad F(x)=\int_{0}^{x^{2}}\left(1+t^{3}\right)^{-1} d t$.
2.3 Graph the function $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x)=x^{3}-3 x$ noting local extremes, inflexion point and intervals in concavity and convexity

3. Optional problems

3.1 Provide a non-differential function $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}_{\text {in }}(0,0)$ which partial derived exist in $(0,0)$
3.2 Let $\{F i\}_{i=1}^{\infty}$ be a succession of closed sets in \mathbb{R}^{n}. is $\bigcup_{i=1}^{\infty} F_{i}$ a closed set in \mathbb{R}^{n}.
3.3 Let A be a matrix of order n. If $A^{t}=-A$ and n is even, prove that $A=0$. Remember that At denotes transpose of A .
3.4 Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces and be $\mathrm{X}=\mathrm{X}_{1} \times \mathrm{X}_{2}$ (the Cartesian product). Prove that the function $d: X \longrightarrow \mathbb{R}_{\text {defined by: }}$

$$
d\left(\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)=d_{1}\left(x_{1}, x_{1}^{\prime}\right)+d_{2}\left(x_{2}, x_{2}^{\prime}\right)
$$

is metric in X .
3.5 Let $\left(\mathbb{Z}_{n},+\right)$ be the additive group of the integers in module n. Is the Cartesian product $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ isomorphic to \mathbb{Z}_{8} ?

