Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

August 7, 2008

1. Linear Algebra

1.1 Consider the following vectors:

$$
v 1=(1,1,1, a), v 2=(1,2,3, a), v 2=(b,-1,0,1), v 4=(0, b, 0,0)
$$

where a and b are real numbers. Determine the maximum dimension and minimum generated space by $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$.
1.2 Provide an example of a 3×3 matrix with real entries that is not similar to a diagonal matrix.
1.3 Find the basis for the null space of the matrix:

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right)
$$

2. Calculate

2.1 Calculate the following limit

$$
\lim _{x \rightarrow \infty} \operatorname{sen}\left(\frac{a}{x}\right)
$$

2.2 Let $\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3$ be particular solutions for the linear differential equation of first order: $y^{\prime}(x)=a(x) y(x)$.

Prove that the following expression is constant:

$$
\frac{y_{3}(x)-y_{2}(x)}{y_{3}(x)-y_{1}(x)}
$$

2.3 Find local maxima and minima for the following function:

$$
y(x)=\int_{0}^{x} \frac{\operatorname{sen} t}{t} d t
$$

3. Optional problems

3.1 Prove that the integer group of order 4 is isomorphic to Z^{4} or to $Z^{2} \times Z^{2}$ 3.2 Provide an example of a succession of functions on L2(R) that converges to 0 with a norm on L2(R)
3.3 Let A be a connected set, open and closed in a metric space X. Prove that A is a connected component of X.
3.4 Prove that each holomorphic bijection between two discs of the complex planar if formed by

$$
f(z)=\frac{a z+b}{c z+d}
$$

for some constants a, b, c, d
Suggestion: Use Schwarz lemma.

