Centro de Investigación y de Estudios Avanzados del IPN Departament of Mathematics

Admissions Examination for the Master's Program

30 June 2014

Name:	
Area:	
Advisor:	

Instrucciones: Solve all problems of sections 1 and 2 and as many as possible from section 3. All solutions must be justified appropriately. The examination will last for three hours.

1. Linear algebra

1.1 Determine for which real values a, b the following matrix is diagonalizable over \mathbb{R} :

$$A := \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right).$$

- 1.2 Let *V* be the vector space of all polynomials $p(t) = a_0 + a_1t + a_2t^2 + \cdots + a_nt^n$, $\forall n \in \mathbb{N}$ with coefficients a_0, a_1, \cdots, a_n en \mathbb{R} .
 - (a) Prove that $B = \{1, t, t^2, t^3, ...\}$ forms a basis for V.
 - (b) Find a linear transformation $T: V \to V$ which is onto but not bijective.
- 1.3 Let $A \in M_{n \times n}(\mathbb{C})$. We say that A is Hermitian if $A = (\overline{A})^T$, i.e., $[A]_{ij} = \overline{[A_{ji}]}$. Prove:
 - (a) *A* is Hermitian if and only if $\langle A \alpha, \beta \rangle = \langle \alpha, A \beta \rangle \quad \forall \alpha, \beta \in \mathbb{C}^n$.
 - (b) If *A* is Hermitian, then its spectrum $S_{\mathbb{C}}(A)$ is a subset of \mathbb{R} .

2. Cálculo

2.1 Let $f: \mathbb{R} \to \mathbb{R}$ be such that f(x + y) = f(x) + f(y). Prove that if f is continuous at 0, then f is continuous in all of \mathbb{R} .

2.2 Calculate the derivative of the function

$$F(x) = \int_{a}^{(\int_{a}^{x} \frac{1}{1+\sin^{2}t}dt)} \frac{1}{1+\sin^{2}t} dt$$

2.3 Find the following limits:

(a)
$$\lim_{n \to \infty} \frac{n!}{n^n}$$
 (b) $\lim_{n \to \infty} \sqrt[n]{a}, a > 0$.
Hint for (a): $n! = n(n+1) \dots k!$ for $k < n$, in particular for $k < \frac{n}{2}$.

3. Optional problems

- 3.1 Prove that if in a group *G* every element is its own inverse, then *G* is abelian.
- 3.2 Calculate the integral $\int_{\gamma} e^z dz$ where γ is the arc of the unit circle joining 1 to *i*.
- 3.3 Let *X* be a topological space and let $f : X \to \mathbb{R}$ be continuous. Prove that the set $Z_f := \{x \in X | f(x) = 0\}$ is closed.
- 3.4 Give an example of a sequence of functions $\{f_n\}_n \in L_2(\mathbb{R})$ which converge to 0 pointwise but which to not converge to 0 in L_2 .
- 3.5 Disign a Türing machine to enumerate the language $\{0^n 1^n | n \ge 0\}.$