Research and Advanced Studies of IPN Department of Mathematics

Examination of admission to the MSc

July 1, 2011

1. Linear Algebra

- 1.1. Suppose that *A* and *B* are endomorphisms of a vector space *V* of finite dimension over a field *F*. Prove or give a counterexample to the following statements:
 - a) Any eigenvector of *AB* is an eigenvector of *BA*.
 - b) Every eigenvalue of *AB* is an eigenvalue of *BA*.
- 1.2. Prove that every vector space (not necessarily finite dimensional) has a basis.
- 1.3. Let A be an $n \times n$ matrix with entries in the integers. Prove that there exists a matrix B with entries in the integers such that $AB = I_n$ if and only if $|\det A| = 1$. Where I_n is the identity matrix of size $n \times n$.

2. Calculus

- 2.1. Show that $\frac{(x^2+y^2)}{4} \le e^{(x+y-2)}$ for all $x \ge 0, y \ge 0$.
- 2.2. Let $x_1, x_2, ...$ is a sequence of nonnegative real numbers such that $x_{n+1} \le x_n + \frac{1}{n^2}$ for all $n \ge 1$. Show that $\lim_{n \to \infty} x_n$ exists.

2.3. Prove that
$$\int_0^{\pi} \frac{x \sin(x)}{1 + \cos^2(x)} dx = \frac{\pi^2}{4}$$

3. Optional problems

- 3.1. Let *T* be a linear transformation from \mathbb{R}^m to \mathbb{R}^n . Prove that there exists an $m \in \mathbb{R}$ such that $|T(v)| \leq m|v|$, for all $v \in \mathbb{R}^m$.
- 3.2. Show that in \mathbb{R}^n a set is compact if and only if it is closed and bounded. Is it true this result in any metric space?
- 3.3. Let G be a finite group such that $|G| = p^2$, with p a prime. Prove that G is abelian.