Centro de Investigación y de Estudios Avanzados del IPN
 Departament of Mathematics

Admissions Examination for the Master's Program

1 July 2013
Name:
Area:
Advisor: \qquad
Instructions: Solve all problems of sections 1 and 2 and as many as possible from section 3. All solutions must be justified appropriately. The examination will last for three hours.

1. Linear algebra

1.1 An $n \times n$ square matrix A is called nilpotent if $A^{r}=0$ for some integer $r \geq 1$. Let A, B be nilpotent matrices of the same dimension and suppose that $A B=B A$. Prove that $A B$ and $A+B$ are nilpotent matrices
1.2 Let $L: V \rightarrow W$ be una linear transformation, where V and W are finite-dimensional vector spaces such that $\operatorname{dim} V>\operatorname{dim} W$. Prove that the kernel of L is not $\{0\}$.
1.3 Let T be a linear transformation on a vector space V of dimension n. Prove that if T has n distinct eigenvalues, then T is diagonalizable.
2. Calculus
2.1 Let $f: I \rightarrow \mathbb{R}$. We say that f is convex if for all $a, b \in I$ and for any $0<t<1$,

$$
f((1-t) a+t b) \leq(1-t) f(a)+t f(b)
$$

Prove that if $I \subseteq \mathbb{R}$ is open and f is convex on I, then f is continuous.
2.2 Prove that the following sequences $\left\{x_{n}\right\}_{n}$ and $\left\{y_{n}\right\}_{n}$ converge and find their respective limits, where
(a) $x_{n}=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\cdots+\frac{n}{n^{2}}, \quad n \geq 1$
(b) $y_{n}=\sqrt{n}(\sqrt{n+1}-\sqrt{n}), \quad n \geq 1$.
2.3 Find the extreme values of the function

$$
f(x, y, z)=x^{2}+y^{2}-z
$$

subject to the restriction

$$
2 x-3 y+z-6=0 .
$$

3. Optional problems

3.1 Let X and Y be topological spaces and suppose further that X is compact. If $f: X \rightarrow Y$ is a continuous function, prove that $f(X)$ is a compact set.
3.2 Let $\left\{f_{n}\right\}$ be a sequence of integrable functions $f_{n}:[a, b] \rightarrow \mathbb{R}$ on $[a, b]$ such that $\left\{f_{n}\right\}$ converges uniformly to a function $f:[a, b] \rightarrow$ \mathbb{R}. Prove that f is integrable on $[a, b]$.
3.3 Prove that every group of order ≤ 5 is abelian.
3.4 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)=\left\{\begin{array}{c}
c x(x-y) \text { if } 0<x<2,-x<y<x \\
0 \quad \text { otherwise }
\end{array}\right\}
$$

where $c>0$ is constant. Calculate the value of c for which f is a probability density.

