Centro de Investigación y de Estudios Avanzados del IPN Departament of Mathematics

 Admissions Examination to the Masters' Program

 Admissions Examination to the Masters' Program}

Instructions: Solve all problems from sections 1 and 2 and as many as you can from section 3 . All solutions should be justified appropriately. The examination lasts for three hours.

1. Linear algebra

1.1 Let n be a natural number and $A=\left(a_{i j}\right)$, where

$$
a_{i j}=\binom{i+j}{i}
$$

for $0 \leq i, j \leq n$. Prove that A has an inverse and that all the entries of A^{-1} are integers.
1.2 Let A be an $n \times n$ matrix and $x \in \mathbb{R}$, each with positive real entries. Prove that if $A^{2} x=x$, then $A x=x$.
1.3 Prove that a matrix A is diagonalizable if and only if there exists a basis composed of eigenvalues of A.

2. Calculus

2.1 Prove that the series

$$
\sum_{k=1}^{n} \frac{3^{k} k!}{k^{k}}
$$

does not converge.
2.2 Let h be a continuous function and g a differentiable function on \mathbb{R}. Calculate the derivative of the function

$$
f(x)=\int_{0}^{g(x)} h(t) d t
$$

2.3 Let $f: \mathbb{R}^{2} \rightarrow R$ be a function such that $|f(x, y)| \leq|(x, y)|^{2}$. Prove that f is differentiable at $(0,0)$.

2. Optional problems

3.1 Let G be a finite group such thet $|G|$ is not a multiple of 3 . Suppose that $(a, b)^{3}=a^{3} b^{3} A$ for all $a, b \in G$. Prove that G is abelian.
3.2 Prove that in \mathbb{R}^{n}, a set is compact if and only if it is closed and bounded. ¿Is this result true in any metric space?
3.3 Give an example of a function which is continuous on the irrationals and discontinuous on the rationals. Justify.

