# Research and Advanced Studies of IPN Department of Mathematics 

## Examination of admission to the MSc

January 17, 2011
Directions: Solve all the problems of Sections 1 and 2, and if you can in
Section 3. All solutions must be properly justified. The exam lasts 3 hours.

## 1. Linear Algebra

1.1. Let $A$ be an $n \times n$ matrix with entries in the set $\{0,1\}$ which has exactly two ones in each column and two ones in each row. Give necessary and sufficient conditions for the rank of $A$ is $n$.
1.2. Let $A, B, n \times m$ and $m \times n$ matrices respectively. If $A B=I_{n}$, and $B A=I_{m}$ prove that $n=m$. Where $I_{k}$ is the identity matrix of size $k \times k$.
1.3. Let $A$ be an $n \times n$ matrix over a field $k$, whose eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$. Be $E_{\lambda_{i}}$ the space of $\lambda_{i}$, for $i=1, \ldots, m$. Prove that if $\sum_{i=1}^{m} \operatorname{dim}\left(E_{\lambda_{i}}\right)=n$ then there exists a matrix $P$ such that $P A P^{-1}$ is a diagonal matrix.

## 2. Calculus

2.1. Prove that the series $\sum_{k=1}^{n} \frac{1}{k}$ not converge.
2.2. Let $h$ be a continuous function, and $g$ a differentiable function in $\mathbb{R}$. Calculate the derivative of the function $f(x)=\int_{0}^{g(x)} h(t) d t$
2.3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=|x y|^{\frac{1}{2}}$. Prove that $f$ is not differentiable at $(0,0)$
3. Optional problems
3.1. If $f(x)=x^{3}-x$, prove that $f(n)$ is a multiple of 3 for all $n \in \mathbb{Z}$.
3.2. Let $A$ be a compact, and $f: A \rightarrow \mathbb{R}$ a continuous function. Prove that $f$ takes a maximum value and minimum value in $A$.
3.3. Give an example of a continuous function in the irrational and discontinuous at the rationals. Justify.
3.4. Calculate the integral : $\int_{0}^{2 \pi} e^{i t} \cos \left(e^{i t}\right) d t$

