Research and Advanced Studies of IPN Department of Mathematics

Examination of admission to the MSc

January 17, 2011

Directions: Solve all the problems of Sections 1 and 2, and if you can in Section 3. All solutions must be properly justified. The exam lasts 3 hours.

1. Linear Algebra

- 1.1. Let A be an n × n matrix with entries in the set {0, 1} which has exactly two ones in each column and two ones in each row. Give necessary and sufficient conditions for the rank of A is n.
- 1.2. Let *A*, *B*, $n \times m$ and $m \times n$ matrices respectively. If $AB = I_n$, and $BA = I_m$ prove that n=m. Where I_k is the identity matrix of size $k \times k$.
- 1.3. Let A be an $n \times n$ matrix over a field k, whose eigenvalues are $\lambda_1, \lambda_2, \ldots, \lambda_m$. Be E_{λ_i} the space of λ_i , for $i = 1, \ldots, m$. Prove that if $\sum_{i=1}^m \dim(E_{\lambda_i}) = n$ then there exists a matrix P such that $P A P^{-1}$ is a diagonal matrix.
- 2. Calculus
 - 2.1. Prove that the series $\sum_{k=1}^{n} \frac{1}{k}$ not converge.
 - 2.2. Let *h* be a continuous function, and g a differentiable function in \mathbb{R} . Calculate the derivative of the function $f(x) = \int_0^{g(x)} h(t) dt$
 - 2.3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = |xy|^{\frac{1}{2}}$. Prove that f is not differentiable at (0,0)

3. Optional problems

- 3.1. If $f(x) = x^3 x$, prove that f(n) is a multiple of 3 for all $n \in \mathbb{Z}$.
- 3.2. Let A be a compact, and $f: A \to \mathbb{R}$ a continuous function. Prove that f takes a maximum value and minimum value in A.
- 3.3. Give an example of a continuous function in the irrational and discontinuous at the rationals. Justify.
- 3.4. Calculate the integral : $\int_0^{2\pi} e^{it} \cos(e^{it}) dt$