Centro de Investigación y de Estudios Avanzados del IPN
 Departament of Mathematics

Admissions Examination for the Master's Program

10 January 2014
Name:
Area:
Advisor: \qquad
Instructions: Solve all problems of sections 1 and 2 and as many as possible from section 3. All solutions must be justified appropriately. The examination will last for three hours.

1. Linear algebra

Notación: Given a matrix A, A^{T} means its transpose.
1.1 We say that an $n \times n$ symmetric matrix A is positive definite if $\langle A x, x\rangle>0, \forall x \in \mathbb{R}^{n}-\{0\}$. Prove that A is symmetric positive definite if and only if $A=P^{T} P$ for some invertible matrix P.
1.2 Let A and B be two $n \times n$ matrices such that $a_{i j}, b_{i j} \in K$, where K is a field. A is said to be equivalent to B, written $A \sim B$, if there exists a matrix C invertible over K such that $A=C B C^{-1}$. Prove that:
(a) " \sim " is an equivalence relation.
(b) $P_{A}(\lambda)=P_{B}(\lambda)$, where $P_{Q}(\lambda)$ denotes the characteristic polynomial of the matrix Q.
1.3 Let $V=\mathbb{R}^{4}$ and let $\langle\cdot, \cdot\rangle$ be its usual internal product. Let $v_{1}=$ $(1,0,1,0)^{T}, v_{1}=(1,1,2,1)^{T}$, and $v_{1}=(0,1,1,2)^{T}$ be three vectores in V. Use the Gram-Schmidt process to find an orthonormal basis in V starting from v_{1}, v_{2} y v_{3}.

2. Calculus

2.1 For each $m \in \mathbb{N}$, define the function

$$
f_{m}(x)=x^{3}+3 x+m .
$$

Prove that f_{m} cannot have two distinct roots in the interval $[0,1]$.
2.2 Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be defined as follows:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Define $Q(h):=f(h) / h$, if $h \neq 0$.
(a) Prove that $Q(h) \rightarrow 0$ when $h \rightarrow 0$.
(b) Prove that f has a derivative at 0 and calculate $f^{\prime}(0)$.
2.3 Let $f: \mathbb{N}-\{0\} \rightarrow \mathbb{N}-\{0\}$ be an injective function. Prove that

$$
\sum_{n \geq 1}\left(\frac{1}{(n+1)!} \prod_{k=1}^{n} f(k)\right)
$$

diverges.

3. Optional problems

3.1 Tell whether the differential equation

$$
\dot{x}(t)=3 x(t)^{2 / 3}, \quad t \geq 0, x(0)=0
$$

has a solution and whether it is unique.
3.2 Let X be a given set. For $x, y \in X$, define

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Prove that (X, d) is a metric space.
3.3 Prove that if H is an abelian normal subgroup in G and G / H is abelian, then G is not necessarily abelian.
3.4 Let γ be the perimeter of the square formed by the points 0,1 , $1+i, i$ and let $z=x+i y$. Calculate

$$
\int_{\gamma} x d z .
$$

