Centro de Investigación y de Estudios Avanzados del IPN Department of Mathematics Examination for the Master's Program
 7 January 2013

Instructions: Solve all problems of sections 1 and 2 and as many as possible from section 3 . All solutions must be justified appropriately. The examination will last for three hours.

I. Linear algebra

1.1 Let A be an $n \times n$ matrix with entries in the set $\{0,1\}$ with exactly two ones in each column and two ones in each row. Give necessary and sufficient conditions for the rank of A to be n.
1.2 Let A, B be $n \times m$ and $m \times n$ matrices respectively. If $A B=I_{n}$ and $B A=I_{m}$, prove that $n=m$, where I_{k} is the identity matrix of order $k \times k$.
1.3 Let T be a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. Prove there exists an M such that $|T(x)| \leq M|x|$ for all $x \in \mathbb{R}^{n}$.

2. Calculus

2.1 Find the limit of the sequence $\frac{(n!)^{\frac{1}{n}}}{n}$.
2.2 Let f be a differentiable function such that f^{\prime} is continuous in the interval $[a, b]$. Prove that

$$
\int_{a}^{b} f^{\prime}(t) d t=f(b)-f(a) .
$$

2.3 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=|x y|^{\frac{1}{2}}$. Prove that f is not differentiable at $(0,0)$.

3. Problemas opcionales

3.1 Find all positive integers n for which n^{2} divides $2^{n}+1$.
3.2 Prove that a set in \mathbb{R}^{n} is compact if and only if it is closed and bounded. Is this result valid in an arbitrary metric space?
3.3 Does there exist a function which is discontinuous on the irrationals and continuous on the rationals? Justify.

