Centre for Research and Advanced Study at IPN Department of Mathematics

Master' Degree Program Admission Examination

December 2009

Instructions: Solve all exercises in sections 1 and 2 and the ones you can in section 3 . Justify you answers.

1. Linear Algebra

1.1 Consider the usual internal product $\mathbb{R}^{n},\langle u, v\rangle$. Prove that for every matrix $\mathrm{n} \times$ $\mathrm{n}, A \in M_{n}(\mathbb{R})$ and vectors $u, v \in \mathbb{R}^{n}$ meets:

$$
\langle A u, v\rangle=\left\langle u, A^{t} v\right\rangle
$$

where At is that traversal matrix of A :

1. A matrix $A \in M_{n}(\mathbb{R})$ it is said that orthogonal if $A A^{t}=I_{n}$. Prove that the following conditions are equivalent:
a) A is orthogonal.
b) $\langle A u, A v\rangle=\langle u, v\rangle, \quad \forall u, v \in \mathbb{R}^{n}$.
c) $\|A u\|=\|u\|, \quad \forall u \in \mathbb{R}^{n}$.
d) Columns in A form an orthogonal basis of \mathbb{R}^{n}.
1.2 Give an example of the orthogonal matrix 2×2 that is not the identity matrix.
1.3 Let the A be a matrix with different appropriate values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and corresponding appropriate values v_{1}, v_{2}, v_{3}. Prove that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.

2. Calculus

2.1 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two differentiable functions of order n. Prove that the n derivative of the product is given by the formula.

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)},
$$

where $f^{(k)}$ represents the $\mathrm{k}^{\text {th }}$ derivative of f and $f^{(0)}=f$.
2.2 Prove that the values of the following expressions do not depend on x.
(a). $\int_{0}^{x} \frac{1}{1+t^{2}} d t+\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t$
(b). $\int_{-\cos x}^{\operatorname{sen} x} \frac{1}{\sqrt{1-t^{2}}} d t$.
2.3 Determine the values for α following series is convergent:

$$
\sum_{n=0}^{\infty} e^{\alpha n}
$$

3. Additional Problems

1. Let $O(n)=\left\{A \in M_{n}(\mathbb{R}) \mid A A^{t}=I_{n}\right\}$ be a set of orthogonal matrices $\mathrm{n} \times \mathrm{n}$.
a) Prove that $\mathrm{O}(\mathrm{n})$ is a group with product of matrices.
b) Prove that with induced topology for $M_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}, O(n)$ is compact.
c) Prove that if $A \in O(n)$ then $\operatorname{det}(A)= \pm 1$.
d) Let $S O(n)=\{A \in O(n) \mid \operatorname{det}(A)=1\}$ be the set of all rotations in set of all rotations in \mathbb{R}^{n} (also known as the special orthogonal group). Prove that $\mathrm{SO}(\mathrm{n})$ is connected.
2. Find the value of the integral

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

3. Let E be a normed vector space on C. Prove that the norm $\|$.$\| comes from$ an scalar product if and only if satisfies the identity of the parallelogram

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right), \quad \forall x, y \in E
$$

