Álgebra de Wiener $W(\mathbb{T})$

Definición (álgebra de Wiener). $W(\mathbb{T})$ consiste en todas las funciones acotadas en \mathbb{T} , cuyas series de Fourier convergen absolutamente:

$$W(\mathbb{T}) := \{ a \in L^{\infty}(\mathbb{T}) : ||a||_{W} := \sum_{n \in \mathbb{Z}} |a_{n}| < +\infty \}.$$

En otras palabras,

$$W(\mathbb{T}) = \{ \mathfrak{F}k \colon k \in \ell^1(\mathbb{Z}) \}, \qquad \| \mathfrak{F}_{\mathbb{Z}}k \|_W = \| k \|_1.$$

- **1.** $W(\mathbb{T})$ es una álgebra de Banach con unidad.
- **2.** El conjunto de todos los polinomios de Laurent $\mathcal{LP}(\mathbb{T})$ es denso en $W(\mathbb{T})$. En particular, $C^1(\mathbb{T})$ es denso en $W(\mathbb{T})$.
- **3.** Todo elemento a de $W(\mathbb{T})$ se puede escribir en la forma $a = \sum_{n \in \mathbb{Z}} a_n e_1^n$ con $\sum_{n \in \mathbb{Z}} |a_n| < \infty$.

Lemma sobre tres álgebras conmutativas

4. Sean A_1 y A_2 álgebras de Banach conmutativas con unidad tales que $A_1 < A_2$, i.e. A_1 es una subálgebra de A_2 y contiene la unidad de A_2 . Entonces la aplicación

$$\Lambda_{A_2,A_1} \colon \mathcal{M}(A_2) \to \mathcal{M}(A_1), \qquad \Lambda_{A_2,A_1} \varphi = \varphi|_{A_1},$$

es bien definida.

5. Lema sobre tres álgebras conmutativas (Simonenko). Sean A_1, A_2, A_3 tres álgebras de Banach conmutativas tales que $A_1 < A_2 < A_3$, A_1 es densa en A_2 y la aplicación Λ_{A_3,A_1} es un homeomorfismo. Entonces Λ_{A_3,A_2} también es un homeomorfismo.

Funcionales multiplicativos del álgebra de Wiener

6. Para cada $t \in \mathbb{T}$, el funcional $\varphi_t \colon W(\mathbb{T}) \to \mathbb{C}$, $\varphi_t(a) := a(t)$, es un funcional multiplicativo.

Notación. $\Phi \colon \mathbb{T} \to \mathcal{M}(W(\mathbb{T})), \ \Phi(t) = \varphi_t.$

- 7. Mostrar que Φ es sobreyectivo, usando el lema sobre tres álgebras conmutativas y el hecho que $C^1(\mathbb{T})$ es denso en $W(\mathbb{T})$.
- 8. Mostrar que Φ es sobrevectivo, usando el ejercicio 3.
- 9. Mostrar que Φ es un homeomorfismo.