Bergman-Toeplitz operators on periodic planar domains Jari Taskinen, University of Helsinki

We study spectra of Toeplitz operators T_a with periodic symbols in Bergman spaces $A^2(\Pi)$ on unbounded periodic planar domains Π , which are defined as the union of infinitely many copies of the translated, bounded periodic cell ϖ . We introduce Floquet-transform techniques and prove a version of the band-gap-spectrum formula, which is well-known in the framework of periodic elliptic spectral problems and which describes the essential spectrum of T_a in terms of the spectra of a family of Toepliz-type operators $T_{a,\eta}$ in the cell ϖ , where η is the so-called Floquet variable.

As an application, we consider periodic domains Π_h containing thin geometric structures related to a small geometric parameter h > 0. We show how to construct a Toeplitz operator $T_a : A^2(\Pi_h) \to A^2(\Pi_h)$ such that the essential spectrum of T_a contains disjoint components which approximatively coincide with any given finite set of real numbers. Moreover, our method provides a systematic and illustrative way how to construct such examples by using Toeplitz operators on the unit disc \mathbb{D} e.g. with radial symbols.

Using a Riemann mapping one can then find a Toeplitz operator $T_b : A^2(\mathbb{D}) \to A^2(\mathbb{D})$ with a bounded symbol b and with the same spectral properties as T_a .