Operador de Hankel

Definición (espacio $H^2_-(\mathbb{T})$). $H^2_-(\mathbb{T}):=\{a\in L^2(\mathbb{T})\colon \langle a,e_n\rangle=0\; \forall n\geqslant 0\}.$

1. $H_{-}^{2}(\mathbb{T})$ la imagen del proyector $P^{-}:=I-P^{+}$ y el complemento ortogonal de $H^{2}(\mathbb{T})$ en $L^{2}(\mathbb{T})$.

Definición (operador de flip). $J: L^2(\mathbb{T}) \to L^2(\mathbb{T}), \quad (Jf) = \frac{1}{t}f(1/t).$

- **2.** Hallar la forma coordenada de J, i.e. el operador $\mathfrak{F}_{\mathbb{Z}}J\mathfrak{F}_{\mathbb{Z}}$.
- **3.** J es un isomorfismo isométrico.
- **4.** $J(H^2(\mathbb{T})) = H^2_{-}(\mathbb{T})$ y al revés.

Definición (operador de Hankel). Sea $a \in L^{\infty}(\mathbb{T})$. El operador de Hankel con símbolo $a, H_a \colon H^2(\mathbb{T}) \to H^2(\mathbb{T})$ se define mediante

$$H_a := P^+ M_a (I - P^+) J.$$

Nota. Algunos autores usan el término operador de Hankel para otro operador:

$$H^2(\mathbb{T}) \to H^2_-(\mathbb{T}), \qquad f \mapsto (I - P^+) M_a f \qquad (f \in H^2(\mathbb{T})).$$

- **5.** $||H_a|| \leq ||a||_{\infty}$.
- **6.** Hallar la matriz de H_a en la base $\{e_n\}_{n\geqslant 0}$.
- 7. Hallar H_a^* .
- 8. Expresar $T_{ab} T_a T_b$ a través de operadores de Hankel.
- 9. Sea a un polinomio de Laurent. Entonces H_a es finitodimensional.
- 10. Sea $a \in C(\mathbb{T})$. Entonces el operador H_a es compacto.