Forzamiento y la Hipótesis del Continuo

David J. Fernández Bretón

Department of Mathematics and Statistics York University

Seminario de Estudiantes Cinvestav, 19 de marzo de 2014

Hipótesis del Continuo

Todo subconjunto infinito de $\mathbb R$ es o bien numerable o bien equipotente con $\mathbb R$.

Pregunta (Cantor, Hilbert)

¿Es verdadera o falsa la hipótesis del continuo?

Teorema (Gödel 1939)

Es imposible demostrar la falsedad de la hipótesis del continuo usando únicamente los axiomas usuales de la Teoría de Conjuntos (ZFE).

Teorema (Cohen 1960)

Es imposible demostrar la hipótesis del continuo usando únicamente los axiomas de ZFE.

Hipótesis del Continuo

Todo subconjunto infinito de $\mathbb R$ es o bien numerable o bien equipotente con $\mathbb R$.

Pregunta (Cantor, Hilbert)

¿Es verdadera o falsa la hipótesis del continuo?

Teorema (Gödel 1939)

Es imposible demostrar la falsedad de la hipótesis del continuo usando únicamente los axiomas usuales de la Teoría de Conjuntos (ZFE).

Teorema (Cohen 1960)

Es imposible demostrar la hipótesis del continuo usando únicamente los axiomas de ZFE.

El **Alfabeto de la Teoría de Conjuntos** consta de los siguientes símbolos:

- Conectivas Lógicas: $\land, \lor, \neg, \Rightarrow, \iff$.
- Cuantificadores: ∀, ∃.
- Delimitadores:), (.
- Símbolos de Variable: x, y, z, ...
- Símbolos de Relación: =, ∈.

Definición

El **Lenguaje de la Teoría de Conjuntos (LTC)** consta de todas las Fórmulas Bien Formadas (FBF), que se definen de manera recursiva:

- Dados dos símbolos de variable x y y, x = y y $x \in y$ son FBF.
- $Si \ \psi, \varphi \ son \ FBF \ entonces \ tambi\'en \ lo \ son \ \neg(\psi), \ (\psi) \land (\varphi), \ (\psi) \lor (\varphi), \ (\psi) \Rightarrow (\varphi) \ \psi \ \Longleftrightarrow \ (\varphi).$
- Si ψ es una FBF y x es un símbolo de variable, entonces $(\forall x)(\psi)$ y $(\exists x)(\psi)$ es una FBF.

El **Alfabeto de la Teoría de Conjuntos** consta de los siguientes símbolos:

- Conectivas Lógicas: ∧, ∨, ¬, ⇒, ⇐⇒ .
- Cuantificadores: ∀, ∃.
- Delimitadores:), (.
- Símbolos de Variable: x, y, z, . . .
- Símbolos de Relación: =, ∈.

Definición

El **Lenguaje de la Teoría de Conjuntos (LTC)** consta de todas las Fórmulas Bien Formadas (FBF), que se definen de manera recursiva:

- Dados dos símbolos de variable x y y, x = y y $x \in y$ son FBF.
- Si ψ , φ son FBF entonces también lo son $\neg(\psi)$, $(\psi) \land (\varphi)$, $(\psi) \lor (\varphi)$, $(\psi) \Rightarrow (\varphi)$ ψ $(\psi) \iff (\varphi)$.
- Si ψ es una FBF y x es un símbolo de variable, entonces $(\forall x)(\psi)$ y $(\exists x)(\psi)$ es una FBF.

|□ ▶ ◀∰ ▶ ◀불 ▶ ◀불 ▶ | 불 | 쒸Q(

Reglas de Inferencia: Reglas que relacionan cierta fórmula con una cantidad finita de otras fórmulas, diciendo que la primera **se sigue** de las otras o bien que las últimas implican la primera.

Ejemplo (Modus Ponens)

La fórmula ψ se sigue de las fórmulas $(\varphi) \Rightarrow (\psi)$ y φ .

Ejemplo (Generalización Existencial)

La fórmula $(\exists x)(\psi[x])$ se sigue de la fórmula $\psi[a]$.

Definición

Si Ψ es un conjunto de fórmulas (axiomas) y ψ otra fórmula, una **demostración** de ψ desde Ψ es una sucesión finita de fórmulas ψ_1, \ldots, ψ_n tal que $\psi_n = \psi$ y cada fórmula ψ_i o bien pertenece a Ψ , o bien se sigue de algunas de las ψ_j con j < i. Si existe una demostración de ψ desde Ψ , esto lo denotamos $\Psi \vdash \psi$ (y si no. entonces es $\Psi \nvdash \psi$).

Reglas de Inferencia

Reglas de Inferencia: Reglas que relacionan cierta fórmula con una cantidad finita de otras fórmulas, diciendo que la primera **se sigue** de las otras o bien que las últimas implican la primera.

Ejemplo (Modus Ponens)

La fórmula ψ se sigue de las fórmulas $(\varphi) \Rightarrow (\psi)$ y φ .

Ejemplo (Generalización Existencial)

La fórmula $(\exists x)(\psi[x])$ se sigue de la fórmula $\psi[a]$.

Definición

Si Ψ es un conjunto de fórmulas (axiomas) y ψ otra fórmula, una **demostración** de ψ desde Ψ es una sucesión finita de fórmulas ψ_1, \ldots, ψ_n tal que $\psi_n = \psi$ y cada fórmula ψ_i o bien pertenece a Ψ , o bien se sigue de algunas de las ψ_j con j < i. Si existe una demostración de ψ desde Ψ , esto lo denotamos $\Psi \vdash \psi$ (y si no, entonces es $\Psi \not\vdash \psi$).

Un **modelo** es una terna ordenada $\mathfrak{M}=(M,E,\iota)$ tal que M es un conjunto no vacío, ι es una función que a cada símbolo de variable le asigna un elemento de M, y E es una relación binaria en M.

Definición

Si $\mathfrak M$ es un modelo y ψ es una fórmula de LTC, escribiremos que $\mathfrak M \models \psi$ si $\mathfrak M$ satisface la fórmula ψ .

Definición

Si Ψ es un conjunto de fórmulas, y ψ es otra fórmula, entonces decimos que $\Psi \vDash \psi$ si para todo modelo \mathfrak{M} , $\mathfrak{M} \vDash \Psi$ implica que $\mathfrak{M} \vDash \psi$.

Un **modelo** es una terna ordenada $\mathfrak{M}=(M,E,\iota)$ tal que M es un conjunto no vacío, ι es una función que a cada símbolo de variable le asigna un elemento de M, y E es una relación binaria en M.

Definición

Si $\mathfrak M$ es un modelo y ψ es una fórmula de LTC, escribiremos que $\mathfrak M \models \psi$ si $\mathfrak M$ satisface la fórmula ψ .

Definición

Si Ψ es un conjunto de fórmulas, y ψ es otra fórmula, entonces decimos que $\Psi \vDash \psi$ si para todo modelo $\mathfrak{M}, \mathfrak{M} \vDash \Psi$ implica que $\mathfrak{M} \vDash \psi$.

Sean Ψ un conjunto de fórmulas y ψ otra fórmula.

Teorema (Correctud, Completud)

 $\Psi \vdash \psi$ si y sólo si $\Psi \vDash \psi$ (no confundir con incompletud de Gödel).

Definición

Decimos que Ψ es **inconsistente** si para alguna fórmula ψ , $\Psi \vdash \psi$ y $\Psi \vdash \neg(\psi)$ (equivalentemente, si $\Psi \vdash \psi$ para toda fórmula ψ). De lo contrario, decimos que Ψ es **consistente**.

Teorema

 Ψ es consistente si y sólo si existe un modelo \mathfrak{M} tal que $\mathfrak{M} \models \Psi$.

Sean Ψ un conjunto de fórmulas y ψ otra fórmula.

Teorema (Correctud, Completud)

 $\Psi \vdash \psi$ si y sólo si $\Psi \vDash \psi$ (no confundir con incompletud de Gödel).

Definición

Decimos que Ψ es **inconsistente** si para alguna fórmula ψ , $\Psi \vdash \psi$ y $\Psi \vdash \neg(\psi)$ (equivalentemente, si $\Psi \vdash \psi$ para toda fórmula ψ). De lo contrario, decimos que Ψ es **consistente**.

Teorema

 Ψ es consistente si y sólo si existe un modelo \mathfrak{M} tal que $\mathfrak{M} \models \Psi$.

Teorema (Gödel, Cohen)

Denotemos por HC la fórmula que expresa la hipótesis del continuo. Supongamos que existe un modelo \mathfrak{M} tal que $\mathfrak{M} \models \mathsf{ZFE}$. Entonces, hay modelos \mathfrak{M}' y \mathfrak{M}'' tales que $\mathfrak{M}' \models \mathsf{ZFE} \cup \{\mathsf{HC}\}$ y $\mathfrak{M}'' \models \mathsf{ZFE} \cup \{\neg \mathsf{HC}\}$.

Definición

- Una noción de forzamiento es simplemente un conjunto preordenado (P,≤) (que satisface cierta condición técnica).
- A los elementos p ∈ P les llamamos condiciones y cuando p ≤ q decimos que p extiende a q.
- Un subconjunto $D \subseteq \mathbb{P}$ es **denso** (coinicial) si $(\forall x \in \mathbb{P})(\exists y \in D)(y \leq x)$.

Teorema (Gödel, Cohen)

Denotemos por HC la fórmula que expresa la hipótesis del continuo. Supongamos que existe un modelo \mathfrak{M} tal que $\mathfrak{M} \models \mathsf{ZFE}$. Entonces, hay modelos \mathfrak{M}' y \mathfrak{M}'' tales que $\mathfrak{M}' \models \mathsf{ZFE} \cup \{\mathsf{HC}\}$ y $\mathfrak{M}'' \models \mathsf{ZFE} \cup \{\neg \mathsf{HC}\}$.

Definición

- Una noción de forzamiento es simplemente un conjunto preordenado (P,≤) (que satisface cierta condición técnica).
- A los elementos p ∈ P les llamamos condiciones y cuando p ≤ q decimos que p extiende a q.
- Un subconjunto $D \subseteq \mathbb{P}$ es **denso** (coinicial) si $(\forall x \in \mathbb{P})(\exists y \in D)(y \leq x)$.

Teorema (Löwenheim-Skolem)

Dado cualquier modelo \mathfrak{M} , es posible encontrar un modelo numerable \mathfrak{M}' (es decir, la primera coordenada M' de la terna ordenada \mathfrak{M}' es un conjunto numerable) tal que para todo enunciado (es decir, fórmula sin variables libres) φ se cumple que $\mathfrak{M} \models \varphi$ si y sólo si $\mathfrak{M}' \models \varphi$.

Corolario (Paradoja de Skolem)

Si ZFE es consistente (es decir, si hay un modelo que satisface los axiomas de ZFE) entonces existe un modelo $\mathfrak{M}=(M,E,\iota)$ tal que M es numerable y tal que $\mathfrak{M} \models \mathsf{ZFE}.$

Corolario (Teorema Fundamental del Forzamiento)

Sea (M, \in) un modelo numerable de ZFE, y sea $\mathbb{P} \in M$ una noción de forzamiento. Entonces, es posible encontrar un filtro (un conjunto dirigido hacia abajo y cerrado por arriba) $G \subseteq \mathbb{P}$ que intersecta a todos los subconjuntos $D \subseteq \mathbb{P}$ que son densos y que son elementos de \mathbb{P} (nota: la condición técnica en la definición de forzamiento garantiza que $G \notin M$).

Teorema (Löwenheim-Skolem)

Dado cualquier modelo \mathfrak{M} , es posible encontrar un modelo numerable \mathfrak{M}' (es decir, la primera coordenada M' de la terna ordenada \mathfrak{M}' es un conjunto numerable) tal que para todo enunciado (es decir, fórmula sin variables libres) φ se cumple que $\mathfrak{M} \models \varphi$ si y sólo si $\mathfrak{M}' \models \varphi$.

Corolario (Paradoja de Skolem)

Si ZFE es consistente (es decir, si hay un modelo que satisface los axiomas de ZFE) entonces existe un modelo $\mathfrak{M}=(M,E,\iota)$ tal que M es numerable y tal que $\mathfrak{M} \models \mathsf{ZFE}.$

Corolario (Teorema Fundamental del Forzamiento)

Sea (M, \in) un modelo numerable de ZFE, y sea $\mathbb{P} \in M$ una noción de forzamiento. Entonces, es posible encontrar un filtro (un conjunto dirigido hacia abajo y cerrado por arriba) $G \subseteq \mathbb{P}$ que intersecta a todos los subconjuntos $D \subseteq \mathbb{P}$ que son densos y que son elementos de \mathbb{P} (nota: la condición técnica en la definición de forzamiento garantiza que $G \notin M$).

Teorema (Löwenheim-Skolem)

Dado cualquier modelo \mathfrak{M} , es posible encontrar un modelo numerable \mathfrak{M}' (es decir, la primera coordenada M' de la terna ordenada \mathfrak{M}' es un conjunto numerable) tal que para todo enunciado (es decir, fórmula sin variables libres) φ se cumple que $\mathfrak{M} \models \varphi$ si y sólo si $\mathfrak{M}' \models \varphi$.

Corolario (Paradoja de Skolem)

Si ZFE es consistente (es decir, si hay un modelo que satisface los axiomas de ZFE) entonces existe un modelo $\mathfrak{M}=(M,E,\iota)$ tal que M es numerable y tal que $\mathfrak{M} \models \mathsf{ZFE}.$

Corolario (Teorema Fundamental del Forzamiento)

Sea (M,\in) un modelo numerable de ZFE, y sea $\mathbb{P}\in M$ una noción de forzamiento. Entonces, es posible encontrar un filtro (un conjunto dirigido hacia abajo y cerrado por arriba) $G\subseteq \mathbb{P}$ que intersecta a todos los subconjuntos $D\subseteq \mathbb{P}$ que son densos y que son elementos de \mathbb{P} (nota: la condición técnica en la definición de forzamiento garantiza que $G\notin M$).

Forzamiento	Teoría de Galois
Modelo base ${\cal M}$	Campo F
Conjunto preordenado ${\mathbb P}$	Polinomio $p(x)$
Noción de Forzamiento ${\mathbb P}$	Polinomio irreducible no lineal $p(x)$
Filtro genérico ${\cal G}$	Raíz $lpha$ del polinomio p
Extensión genérica $V[G]$	Extensión de campos $F(\alpha)$

Sea X un conjunto de cardinalidad estrictamente mayor que \aleph_1 . Nuestro conjunto preordenado será

$$\mathbb{P} = \{ f : M \longrightarrow \{0,1\} \big| M \subseteq X \times \mathbb{N} \text{ finito} \},$$

con el orden dado por $f \leq g$ si y sólo si $f \supseteq g$.

$$A_x = \{ n \in \mathbb{N} | (\exists f \in G)((x, n) \in \text{dom}(f) \land f(x, n) = 1) \}$$

4 日 5 4 周 5 4 B 5 4 B 5 B

Sea X un conjunto de cardinalidad estrictamente mayor que \aleph_1 . Nuestro conjunto preordenado será

$$\mathbb{P} = \{ f : M \longrightarrow \{0,1\} \big| M \subseteq X \times \mathbb{N} \text{ finito} \},$$

con el orden dado por $f \leq g$ si y sólo si $f \supseteq g$.

Definición

Si G es un ultrafiltro \mathbb{P} -genérico, entonces en M[G] definimos un subconjunto de \mathbb{N} por cada elemento $x \in X$, de la manera siguiente:

$$A_x = \{ n \in \mathbb{N} | (\exists f \in G)((x, n) \in \text{dom}(f) \land f(x, n) = 1) \}$$

10 / 13

4□ > 4₫ > 4½ > 4½ > ½ 99(

Lema

Para cada $(x, n) \in X \times \mathbb{N}$, el conjunto

$$\{f \in \mathbb{P} | (x, n) \in \text{dom}(f)\}$$

es denso.

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N}) (f(x, n) \neq \chi_B) \}$$

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N})((x,n),(y,n) \in \text{dom}(f) \land f(x,n) \neq f(y,n))\}$$

Lema

Para cada $(x, n) \in X \times \mathbb{N}$, el conjunto

$$\{f \in \mathbb{P} | (x, n) \in \text{dom}(f)\}$$

es denso.

Lema

Para cada subconjunto $B \subseteq N$ que es elemento de M, y para cada $x \in X$, el conjunto

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N}) (f(x, n) \neq \chi_B) \}$$

es denso.

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N})((x,n), (y,n) \in \text{dom}(f) \land f(x,n) \neq f(y,n))\}$$

Lema

Para cada $(x, n) \in X \times \mathbb{N}$, el conjunto

$$\{f \in \mathbb{P} | (x, n) \in \text{dom}(f)\}$$

es denso.

Lema

Para cada subconjunto $B\subseteq N$ que es elemento de M, y para cada $x\in X$, el conjunto

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N}) (f(x, n) \neq \chi_B) \}$$

es denso.

Lema

Para cada par de elementos distintos $x, y \in X$, el conjunto

$$\{f \in \mathbb{P} | (\exists n \in \mathbb{N})((x,n), (y,n) \in \text{dom}(f) \land f(x,n) \neq f(y,n)) \}$$

es denso.

Como $\{A_x | x \in X\}$ es una familia de subconjuntos distintos de \mathbb{N} , en la extensión genérica \mathbb{R} tiene cardinalidad al menos tan grande como X.

Sin embargo, algo pudo pasarle a la cardinalidad de X en el proceso...

Lema

La noción de forzamiento P preserva cardinales debido a que es c.c.c.

Como $\{A_x | x \in X\}$ es una familia de subconjuntos distintos de \mathbb{N} , en la extensión genérica \mathbb{R} tiene cardinalidad al menos tan grande como X.

Sin embargo, algo pudo pasarle a la cardinalidad de X en el proceso...

Lema

La noción de forzamiento P preserva cardinales debido a que es c.c.c.

Para quien guste profundizar

- Bartoszyński, Tomek y Judah, Haim Set Theory. On the Structure of the Real Line. A. K. Peters, Massachusetts, 1995.
- Devlin, Keith J. The Axiom of Constructibility. Lecture Notes in Mathematics (617), Springer-Verlag, 1977.
- Hrbacek, Karel y Jech, Thomas Introduction to set theory. 3rd. ed., Pure and Applied Mathematics (220), Marcel Dekker, 1999.
- Jech, Thomas Set Theory. Pure and Applied Mathematics (79), Academic Press, 1978.
- Kunen, Kenneth Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics (102), Elsevier, 2006.
- Shelah, Saharon Proper and Improper Forcing, Perspectives in Mathematical Logic, Springer-Verlag, 1998.
- Villegas Silva, Luis Miguel; Rojas Rebolledo, Diego y Miranda Perea, Favio Ezequiel; Conjuntos y modelos. Universidad Autónoma Metropolitana, Iztapalapa, 2000.
 YORK

