Álgebras de Banach. Grupo de elementos invertibles

En esta sección, A es un álgebra de Banach unital. El elemento unidad denotemos con 1_A o con e.

Definición (el grupo de los elementos invertibles). El conjunto de los elementos invertibles de A de denota con Inv(A) o G(A) o A^{-1} . Es fácil de ver que Inv(A) es un grupo.

1. Serie de von Neumann. Sea $a \in A$ tal que ||a|| < 1. Entonces $e - a \in Inv(A)$ y

$$(e-a)^{-1} = \sum_{n=0}^{\infty} a^n,$$

Encontrar estimaciones superiores para $\|(e-a)^{-1}\|$ y $\|(e-a)^{-1}-e\|$ en términos de $\|a\|$.

- **2.** Para a invertible y b suficiente cerca de a, b es invertible también. Encontrar estimaciones superiores para $||b^{-1}||$ y $||b^{-1} a^{-1}||$ en términos de $||a^{-1}||$ y ||b a||.
- **3.** Inv(A) es un conjunto abierto en A.
- **4.** El mapeo inv: $Inv(A) \to Inv(A)$, $a \mapsto a^{-1}$, es un homeomorfismo.
- 5. Escribir la definición de la derivada de Fréchet.
- **6.** Mostrar que inv es diferenciable (en el sentido de Fréchet) en cualquier punto de Inv(A). Calcular su derivada en cualquier punto $a_0 \in Inv(A)$.

Definición (la función exponente). Para $a \in A$,

$$\exp(a) := \sum_{n=0}^{\infty} \frac{a^n}{n!}.$$

- 7. Para $a, b \in A$ tales que ab = ba, $\exp(a + b) = \exp(a) \exp(b)$.
- **8.** $\exp(A) \subset \operatorname{Inv}(A)$.

Definición (componente principal de Inv(A)). El componente principal $Inv_1(A)$ del grupo Inv(A) es su componente conexo conteniendo e.

- **9. Lema.** Sean X, Y subconjuntos conexos de A. Entonces $XY := \{xy \colon x \in X, \ y \in Y\}$ también es un subconjunto conexo de A.
- 10. Teorema (descripción de $Inv_1(A)$). $Inv_1(A)$ es un subgrupo normal de Inv(A). Este subgrupo es generado por el conjunto exp(A), i.e.

$$Inv_1(A) = \{ \exp(a_1) \cdot \ldots \cdot \exp(a_k) \colon k \in \{0, 1, 2, \ldots\}, \ a_1, \ldots, a_k \in A \}.$$

11. Si A es conmutativa, entonces $Inv_1(A) = exp(A)$.