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kgroundLet X be a �nite set. A set system or 
on�guration is a pair (X;A), where A � 2X . Theorder of the set system is jXj. The elements of X are points and the elements of A are blo
ks.A t-(v; k; �) design is a k-uniform set system (X;A) of order v su
h that every t-subset of Xis 
ontained in pre
isely � blo
ks of A. A 2-(v; 3; 1) design is a Steiner triple system of orderv and is denoted by STS(v). A (k; `)-
on�guration in an STS (X;A) is a subset of ` blo
ksin A whose union is a k-element subset of X. The Pas
h 
on�guration or quadrilateral isthe (6,4)-
on�guration on elements (say) a; b; 
; d; e; f with blo
ks fa; b; 
g; fa; d; eg; ff; d; bgand ff; 
; eg. An STS is anti-Pas
h (or quadrilateral-free) if it does not 
ontain the (6,4)-
on�guration.A 3-oriented graph is a graph in whi
h ea
h edge e (with endpoints x and y) has one ofthree possible orientations: positive, negative, or null oriented from x to y. The edge e ispositive oriented from x to y if and only if it is negative oriented from y to x; when e is nulloriented the roles of x and y 
an be freely inter
hanged. We draw a positive oriented edgefrom x to y by an arrow from x to y and a null oriented edge without arrows. A 3-orientedgraph is simple if, for every pair of verti
es x and y, the graph 
ontains at most one positive,one negative, and one null oriented edge from x to y. In a 3-oriented simple graph we 
anuse without ambiguity (x; y)1, (x; y)�1, and (x; y)0 to denote a positive, negative, and nulloriented edge from x to y, respe
tively. 1



2 C.J. Colbourn and F. SagolsLet G be a 3-oriented simple graph. A path P in G through the verti
es x0; : : : ; xn,n � 1, is denoted by P = x0; x�11 : : : ; x�nn where �1; : : : ; �n 2 f1;�1; 0g, if and only if P usesthe edges (x0; x1)�1 ; : : : ; (xn�1; xn)�n . When P is a 
y
le we write P = (x�00 ; x�11 : : : ; x�n�1n�1 ),with �0 = �n. If �0+�1+: : :+�n�1 � 0 mod � for some � > 0, P is �-balan
ed. A two-fa
tor ofG in whi
h all 
y
les are �-balan
ed is �-balan
ed. A triangulation is a partition of the edgesin G in paths of length 3, and a triangulation is 3-balan
ed if all its paths are 3-balan
ed.As we soon see, 3-balan
ed triangulations of a 3-oriented simple graph are 
losely related toSteiner triple systems.The graph with v verti
es in whi
h ea
h pair of verti
es is joined by three parallel edgesis denoted by 3Kv, and 3Kv denotes the 3-oriented simple graph with v verti
es in whi
hea
h pair x and y of verti
es is joined by a positive, a negative, and a null oriented edge fromx to y. For both graphs, the vertex sets V (3Kv) = V (3Kv) = f0; 1; : : : ; v � 1g.2 A generalization of Bose's methodBose's method [1℄ is one of the most important and well known paradigms in design theory.Our obje
tive is to develop a natural generalization.Theorem 2.1 Every 3-balan
ed triangulation of 3Kv yields an STS(3v).Proof: Let T be a 3-balan
ed triangulation of 3Kv. Let us de�ne:X = f(a; i)ja 2 f0; : : : ; v � 1g and i 2 f0; 1; 2gg;A1 = ff(a; 0); (a; 1); (a; 2)gj a 2 f0; : : : ; v � 1ggand for ea
h T = (a�a; b�b ; 
�
) 2 TAT = ff(a; j); (b; (j + �b) mod 3); (
; (j + �b + �
) mod 3)gjj = 0; 1; 2g:AT is well-de�ned, sin
e if we use a di�erent representation of T , say (b�b ; 
�
; a�a), we get:A0T = ff(b; k); (
; (k + �
) mod 3); (a; (k + �
 + �a) mod 3)gjk = 0; 1; 2g;Making the 
hange of variable k = (j + �b) mod 3, and applying the fa
t that �a + �b + �
 �0 mod 3, we �nd that A0T = AT . The other representations of T produ
e the same set.We 
laim that (X;A) with A = A1 S(ST2T AT ) is an STS(3v). In fa
t, let B =f(a; i); (b; j)g be a two-subset of X; if a = b then f(a; 0); (a; 1); (a; 2)g is the unique blo
k inA 
ontaining B; otherwise B is 
ontained in exa
tly one of the blo
ks in AT where T is theunique triangle in T 
ontaining the edge (a; b)(j�i) mod 3.Bose's method builds Steiner triple systems using a spe
ial type of 3-balan
ed triangu-lations of 3Kv. A Bose triangulation is a 3-balan
ed triangulation of 3Kv su
h that ea
h ofits triangles 
an be expressed as (a0; b1; 
�1) for appropriate elements a; b; 
 2 f0; : : : ; v� 1g.A latin square of order n is an n � n array, ea
h 
ell of whi
h 
ontains exa
tly one ofthe symbols in f0; : : : ; n� 1g, su
h that ea
h row and ea
h 
olumn of the array 
ontains the



Triangulations and a generalization of Bose's method 3symbols in f0; : : : ; n� 1g exa
tly on
e. A quasigroup of order n is a pair (Q; Æ), where Q isa set of size n and Æ is a binary operation on Q su
h that for every pair of elements a; b 2 Q,the equations a Æ x = b and y Æ a = b have unique solutions. The tabular representation of aquasigroup of order n is a latin square of order n.Proposition 2.2 Every Bose triangulation produ
es a 
ommutative and idempotent quasi-group. Conversely every 
ommutative and idempotent quasigroup produ
es a Bose triangu-lation.Proof Let T be a Bose triangulation of 3Kv. If Q = f0; : : : ; v � 1g and a; b 2 Q we de�nea Æ b = ( 
 if (a0; 
1; b�1) 2 Ta if a = bThe binary operation Æ is de�ned for every pair a; b 2 Q be
ause there exists exa
tly onetriangle in T 
ontaining the edge (a; b)0. The operation Æ is 
ommutative and idempotent,as follows. The equation a Æ x = b has only one solution in x be
ause only the triangle(a0; b1; x�1) in T 
ontains the edge (a; b)1 for some x, and the equation b Æ y = a has onlyone solution in y be
ause only the triangle (b0; a1; y�1) in T 
ontains the edge (a; b)�1 forsome y. Hen
e (Q; Æ) is a 
ommutative and idempotent quasigroup.In the other dire
tion, let (Q; Æ) be a 
ommutative and idempotent quasigroup. De�neT = f(a0; 
1; b�1)ja; b 2 Q and a Æ b = 
g. Every triangle in this set is well-de�ned be
ause(a0; 
1; b�1) = (b0; 
1; a�1). Let a; b be arbitrarily 
hosen elements in Q, (a; b)0 belongs onlyto the triangle (a0; 
1; b�1) for some 
 2 Q be
ause Æ is a well-de�ned binary operation. Then(a; b)1 belongs only to the triangle (a0; b1; x�1) where x is the unique solution to the equationaÆx = b; and (a; b)�1 belongs only to the triangle (b0; a1; y�1) where y is the unique solutionto the equation b Æ y = a. T is 3-balan
ed, and it is a Bose triangulation.If we take a 
ommutative and idempotent quasigroup (Q; Æ) of order v, build from it theBose triangulation T given by Proposition 2.2 and �nally build from T the STS(3v) given byTheorem 2.1, then the resulting STS is the same as that obtained from (Q; Æ) by using Bose'smethod dire
tly. Bose triangulations provide only one way to �nd 3-balan
ed triangulationsof 3Kv, but there are others. There are many possibilities, but we are interested in those3-balan
ed triangulations with additional algebrai
 stru
ture.An uniform triangulation of 3Kv is a 3-balan
ed triangulation of 3Kv su
h that ea
hof its triangles 
an be expressed as (a0; b1; 
�1) or (a0; b�1; 
1) for appropriate elementsa; b; 
 2 f0; : : : ; v � 1g. Triangles of the �rst type are positive and those of the se
ondtype negative. A positive triangle 
annot be expressed as a negative one, nor vi
e versa. ABose triangulation does not permit the mixture of positive and negative triangles, but in anuniform triangulation we admit this possibility. Look the following uniform triangulation of3Kv for v = 7, graphi
ally represented in Figure 1:T7 = f f00; 11; 2�1g; f40; 1�1; 01g; f60; 11; 4�1g; f10; 61; 4�1g; f40; 6�1; 21g;f20; 61; 3�1g; f20; 31; 6�1g; f10; 3�1; 21g; f50; 31; 1�1g; f30; 51; 1�1g;



4 C.J. Colbourn and F. Sagolsf10; 5�1; 61g; f60; 51; 0�1g; f60; 01; 5�1g; f30; 0�1; 61g; f40; 01; 3�1g;f00; 41; 3�1g; f30; 4�1; 51g; f50; 41; 2�1g; f50; 21; 4�1g; f00; 2�1; 51g;f00; 21; 1�1gg
2          0            4           6            2           1           5            6           3           4            5           0            1

1           4           2           3            1           6           0            3           5           2Figure 1: A uniform triangulation of 3K7When this triangulation is used in the 
onstru
tion of Theorem 2.1 we get an STS(21)isomorphi
 to the following, reading 
olumns as triples:000000000011111111122222222233333334444444555555666667777888899aab

dd13579bdfhj3469a
fgi345678abe678begi5689abd789ab
79beg9aef9abf
g
eedhfh2468a
egik578bdehjk9fid
jgkhad
fkhje
gkhjikhdfgjijhfkhbgjekdifiijigkkjA dire
t analysis shows that it is anti-Pas
h. It is well known (see [4℄) that Bose's methoddoes not produ
e an anti-Pas
h STS(21), so our extension is not trivial.3 3-tri algebrasIn the same way that Bose's method 
an be formulated in terms of 
ommutative and idempo-tent quasigroups, the 
onstru
tion given in Theorem 2.1 
an be stated by using 3-tri algebras,algebrai
 stru
tures that generalize quasigroups.A 3-tri algebra1 (read this as three triangulation algebra) of order v > 0 is a pair � = (C; Æ)where C is a set with 
ardinality v and Æ is a binary, 
losed, 
ommutative and idempotentoperation over C su
h that for every pair of distin
t elements a; b 2 C the equationsa Æ x = b (1)b Æ y = a (2)with unknowns x and y, satisfy one and only one of the 
onditions:1The sele
tion of the name \3-tri algebra" was diÆ
ult. Certainly these stru
tures are a weakening ofquasigroups, so a name made of some pre�x like \near", \half", \meta" or something similar followed bythe word \quasigroup" 
ould be better. However these names do not make 
lear that the sour
e of 3-trialgebras are the 3-balan
ed triangulations. Other balan
ed partitions of the edges in a k-oriented graph,for some appropriate values of k, 
ould be de�ned, probably some of them produ
e new algebras useful indesign theory. The advantage of the name \3-tri algebra" is that it 
ould be easily generalized with a 
learmeaning in this 
ontext.



Triangulations and a generalization of Bose's method 51. There are exa
tly two solutions for x and none for y.2. There are exa
tly two solutions for y and none for x.3. There is exa
tly one solution for x and one for y.Every 
ommutative and idempotent quasigroup is a 3-tri algebra. One example of 3-trialgebra whi
h is not a quasigroup is the pair (f0; : : : ; 6g; Æ) where Æ is the operation shownin Figure 2. This is the 3-tri algebra used to generate the STS(21) given in Se
tion 2.Æ 0 1 2 3 4 5 60 0 2 1 4 1 2 51 2 1 3 5 6 3 52 1 3 2 6 6 4 33 4 5 6 3 0 4 04 1 6 6 0 4 2 15 2 3 4 4 2 5 06 5 5 3 0 1 0 6Figure 2: Multipli
ation table of a 3-tri algebraThe multipli
ation table of a 3-tri algebra has a stru
ture similar to that of a uniformsquare. However, an element 
an appear twi
e (at most) in a row; an element j does notappear in a row i if and only if i appears twi
e in the row j. Any idempotent and symmetri
matrix with this property 
orresponds to a 3-tri algebra.4 3-tri algebras and 2-(v; 3; 3) designsOur main interest in 3-tri algebras is their 
apa
ity to generalize Bose's method. However,as we show here, they have a strong link with 2-(v; 3; 3) designs. Let � = (f0; : : : ; v� 1g; Æ)be a 3-tri algebra. For every unordered pair fi; jg of di�erent elements in f0; : : : ; v� 1g, theset T�;fi;jg def= fi; j; i Æ jg (or Tfi;jg when there is no 
onfusion with the 3-tri algebra) is thetriple indu
ed by i and j in �. The set T� def= fTfi;jgjfi; jg � f0; : : : ; v � 1g; i 6= jg is the setof triples indu
ed by �.Let � = (f0; 1; : : : ; 7g; Æ) be the 3-tri algebra with the operation in Figure 2, thenT� = f Tf0;1g = f0; 1; 2g; Tf0;2g = f0; 2; 1g; Tf0;3g = f0; 3; 4g; Tf0;4g = f0; 4; 1g;Tf0;5g = f0; 5; 2g; Tf0;6g = f0; 6; 5g; Tf1;2g = f1; 2; 3g; Tf1;3g = f1; 3; 5g;Tf1;4g = f1; 4; 6g; Tf1;5g = f1; 5; 3g; Tf1;6g = f1; 6; 5g; Tf2;3g = f2; 3; 6g;Tf2;4g = f2; 4; 6g; Tf2;5g = f2; 5; 4g; Tf2;6g = f2; 6; 3g; Tf3;4g = f3; 4; 0g;Tf3;5g = f3; 5; 4g; Tf3;6g = f3; 6; 0g; Tf4;5g = f4; 5; 2g; Tf4;6g = f4; 6; 1g;Tf5;6g = f5; 6; 0ggAs we 
an see it is a 2� (7; 3; 3) design, and in fa
t we have the following general result.



6 C.J. Colbourn and F. SagolsProposition 4.1 For any 3-tri algebra � of order v, T� is a 2-(v; 3; 3) design.Proof: Every pair of distin
t elements a; b 2 f0; : : : ; v�1g belongs to exa
tly three di�erenttriples in T�. One is Tfa;bg, and the other two are:Case 1: Tfa;x1g and Tfa;x2g where x1 and x2 are the two solutions to equation (1), orCase 2: Tfb;y1g and Tfb;y2g where y1 and y2 are the two solutions to equation (2), orCase 3: Tfa;x1g and Tfb;y1g where x1 and y1 are the solutions to equations (1) and (2).T� is also 
alled the 2-(v; 3; 3) design indu
ed by �. Proposition 4.1 is a generalization ofthe well known fa
t (see [2℄, for example) that an idempotent and 
ommutative quasigroup
an be used to produ
e a 2-(v; 3; 3) design. A 
onverse is valid for 3-tri algebras:Proposition 4.2 Every 2-(v; 3; 3) design generates a family of 3-tri algebras.Proof: Let (f0; : : : ; v � 1g; T ) be a 2-(v; 3; 3) design. Let GT be the bipartite graph withbipartition V1 = ffa; bgja 6= b; a; b 2 f0; : : : ; v � 1gg and V2 = T , two verti
es fi; jg 2 V1and T 2 V2 being joined by an edge if and only if fi; jg � T . Then GT is a 3-regular graph.We establish that ea
h of its perfe
t mat
hings produ
es a 3-tri algebra of order v.Let M � E(G) be one su
h mat
hing. We use the notationM(i; j) = fi; j; kg if and onlyif (fi; jg; fi; j; kg) 2M . De�ne a binary operation ÆM on f0; : : : ; v � 1g byi ÆM j = ( k if i 6= j and M(i; j) = fi; j; kgi if i = jEvery set fa; bg 2 V1 is 
ontained in three and only three triples in T , so there exist twodi�erent elements 
 and d satisfying one of the following:Case 1: fa; bg belongs simultaneously toM(a; b),M(a; 
) = fa; b; 
g andM(a; d) = fa; b; dg.Case 2: fa; bg belongs simultaneously toM(a; b),M(b; 
) = fa; b; 
g andM(b; d) = fa; b; dg.Case 3: fa; bg belongs simultaneously toM(a; b),M(a; 
) = fa; b; 
g andM(b; d) = fa; b; dg.The solutions for x and y to the equations a ÆM x = b and b ÆM y = a are as follows. InCase 1, 
 and d are solutions in x and y has no solution. In Case 2, 
 and d are solutions in yand x has no solution. Finally in Case 3, 
 is a solution in x and d a solution in y. Then ÆMis a 
ommutative and idempotent binary operation. We 
on
lude that (f0; : : : ; v � 1g; ÆM)is a 3-tri algebra produ
ed from M .



Triangulations and a generalization of Bose's method 75 Uniform triangulations and 3-tri algebrasAs we saw in Theorem 2.1, the generalization of Bose's 
onstru
tion rests on our ability to�nd 3-balan
ed triangulations of 3Kv. The 3-tri algebras form an intermediate step between3-balan
ed triangulations and quasigroups. In fa
t, 3-tri algebras of order v are `almost'equivalent to uniform triangulations of 3Kv.Proposition 5.1 There exist a one to one 
orresponden
e between the set of uniform tri-angulations of 3Kv and the set of 3-tri algebras of order v.Proof: Let U be a uniform triangulation of 3Kv. We build the 3-tri algebra �U =(f0; : : : ; v � 1g; ÆU) where i ÆU j def= k if and only if one of the following three 
onditionsis satis�ed:1. i = j = k.2. (i0; k1; j�1) 2 U .3. (i0; k�1; j1) 2 U .Then ÆU is a 
ommutative and idempotent binary operation. On the other hand, if a,b are di�erent elements in f0; : : : ; v � 1g, then (a; b)0 2 T0, (a; b)1 2 T1 and (a; b)�1 2 T�1where T0; T1 and T�1 are 3-di�erent triangles in U . There exist two di�erent elements 
; d 2f0; : : : ; v � 1g su
h that only one of the following 
ases is satis�ed:Case 1: T1 = (a0; b1; 
�1) and T�1 = (a0; b�1; d1).Case 2: T1 = (b0; a�1; 
1) and T�1 = (b0; a1; d�1).Case 3: T1 = (a0; b1; 
�1) and T�1 = (b0; a1; d�1).The solutions in x and y to the equations a ÆU x = b and b ÆU y = a are as follows. InCase 1, 
 and d are solutions in x, and y has no solution. In Case 2, 
 and d are solutionsin y, and x has no solution. Finally in Case 3, 
 is a solution in x and d a solution in y. We
on
lude that �U is a 3-tri algebra.The 
onverse of this proposition does not hold. Only some 3-tri algebras, to be 
hara
ter-ized, produ
e uniform 3-tri algebras of 3Kv. Let � = (f0; : : : ; v� 1g; Æ) be a 3-tri algebra oforder v. The Bose graph of �, denoted B�, is a graph with the triples in T� as verti
es, twoverti
es Tfi1;j1g and Tfi2;j2g being joined by an edge if and only if the 
orresponding triplesshare a pair fi; jg su
h that fi; jg 6= fi1; j1g and fi; jg 6= fi2; j2g. The same idea 
an beexpressed in terms of � by saying that Tfi1;j1g and Tfi2;j2g are adja
ent if one of the following
onditions is true (as shown in Figure 3):Condition 1: j1 = i2 Æ j2 and i2 = i1 Æ j1.Condition 2: j1 = i2 and i1 Æ j1 = i2 Æ j2.
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 1                         1    2                        2

1    1     2    2i   = i     j                    j                           i     j  =  i     j

i                          j  = i      j           i                          j  = i                         j

a) Condition 1 (positive edge)          b) Condition 2 (negative edge)

2     1    1                   2

1                         1    2     2Figure 3: Adja
en
ies in B�
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Figure 4: The Bose graph of the 3-tri algebra in Se
tion 3



Triangulations and a generalization of Bose's method 9An edge in B� is positive if it satis�es Condition 1; otherwise it is negative. Figure 4depi
ts the Bose graph of the 3-tri algebra in Figure 2. In this 
ase the graph is a 
y
le.Lemma 5.2 If � = (f0; : : : ; v�1g; Æ) is a 3-tri algebra, then B� is a 2-regular simple graph.Proof: A triple Tfa;bg = fa; b; 
g in V (B�) = T� is only adja
ent to triples 
ontainingfa; 
g and fb; 
g. Sin
e T� is a 2-(v; 3; 3) design, other than Tfa;bg there are only two triples
ontaining fa; 
g. One is Tfa;
g, but it is not adja
ent to Tfa;bg. The other is one of thefollowing two possibilities:Case 1: Tfa;xg where a Æ x = 
 and x 6= b; orCase 2: Tf
;yg where 
 Æ y = a.The 
ase depends upon the solutions of the equations a Æ x = 
 and 
 Æ y = a. In eithersituation su
h a triple is the only one adja
ent to Tfa;bg whi
h 
ontains fa; 
g. Similarly Tfa;bgis also adja
ent to only one of the following triples 
ontaining fb; 
g:Case 1': Tfb;x0g where b Æ x0 = 
 and x0 6= a; orCase 2': Tf
;y0g where 
 Æ y0 = b.The triple from Cases 1 and 2, Tfa;bg, and the triple from Cases 1' and 2' are di�erent, soTfa;bg has degree two and its in
ident edges are neither loops nor parallel edges in B�. We
on
lude that this is a 2-regular simple graph.Let � be a 3-tri algebra of order v. Any fun
tion � : ffi; jgji 6= j and i; j 2 f0; : : : ; v �1gg ! f+;�g su
h that for every edge e = (Tfa;bg; Tf
;dg) in E(B�) �(a; b) = �(
; d) if andonly if e is positive is a signing of �. If � has at least one signing it is signable; otherwise itis unsignable.Lemma 5.3 A 3-tri algebra � is signable if and only if every 
y
le in B� has an evennumber of negative edges.Proof: Let � be a signing of � and let P = Tfa0;b0g; : : : ; Tfak ;bkg be a path in B�, �(ak; bk) =�(a0; b0)(�1)n where n is the number of negative edges in P ; so � is well de�ned if and onlyif the number of negative edges in every 
y
le of B� is even.The multipli
ation table of an unsignable 3-tri algebra is given in Figure 5. It is unsignablebe
ause its Bose graph 
ontains the 
y
le (Tf4;5g; Tf5;6g; Tf4;6g) in whi
h the three edges arenegative. Let � = (f0; : : : ; v � 1g; Æ) be a signable 3-tri algebra, and let � be one of itssignings. For every pair a; b of di�erent elements in f0; : : : ; v � 1g, the 3-oriented 
y
leT�;�;a;b def= (a0; (aÆb)�(a;b); b��(a;b)) (or T a;b when there is no 
onfusion with � and �) is the 3-oriented 
y
le indu
ed by �, �, a and b. The set T �;� def= fT a;bja 6= b and a; b 2 f0; : : : ; v�1ggis the set of 3-
y
les indu
ed by � and �. The sets T� and T �;� are essentially the same,but in the latter we have 
hosen orientations.
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ation table of an unsignable 3-tri algebraProposition 5.4 If � = (f0; : : : ; v � 1g; Æ) is a signable 3-tri algebra of order v and � isone of its signings, then T �;� is a uniform triangulation of 3Kv.Proof: Let a; b be two di�erent elements in f0; : : : ; v � 1g. We establish that ea
h of theedges (a; b)0; (a; b)1 and (a; b)�1 belongs to exa
tly one 3-
y
le in T �;�. Evidently (a; b)0belongs only to T a;b. Now we have three possibilities:Case 1: The equation a Æ x = b has two solutions in x, say 
 and d. (Tf
;ag; Tfa;dg) isa negative edge in B�, so �(a; d) = ��(a; 
), and thus (a; b)�(a;
) belongs to T a;
 =(a0; b�(a;
); 
��(a;
)) and (a; b)��(a;
) belongs to T a;d = (a0; b��(a;
); 
�(a;
)). No other 3-
y
le in T �;� 
ontains fa; bg.Case 2: The equation b Æ y = a has two solutions in y. This is similar to Case 1.Case 3: The equations a Æ x = b and b Æ y = a have one solution in x and one in y,say x = 
 and y = d. (Tf
;ag; Tfb;dg) is a positive edge in B�, so �(b; d) = �(a; 
),and thus (a; b)�(a;
) belongs to T a;
 = (a0; b�(a;
); 
��(a;
)) and (a; b)��(a;
) belongs toT b;d = (b0; a�(b;d); 
��(b;d)). No other 3-
y
le in T �;� 
ontains fa; bg.Sin
e all 3-
y
les in T �;� have the form of a uniform triangulation we 
on
lude that it isa uniform triangulation of 3Kv.6 The Skolem methodWe use the idea of Theorem 2.1 to generalize the Skolem method (see [2℄, for example). Letv be a positive even integer, say v = 2n. Denote by 3K 0v the graph 3Kv � f(a; n+ a)�1ja 2f0; : : : ; n � 1ggSf(n + a; n + a)1ja 2 f0; : : : ; ngg. Then 3K 0v is not simple, sin
e we haverepla
ed a perfe
t mat
hing of negative edges in 3Kv by positive loops on the verti
esn; n+ 1; : : : ; 2n� 1.Theorem 6.1 Every 3-balan
ed triangulation of 3K 0v yields an STS(3v + 1).



Triangulations and a generalization of Bose's method 11Proof: Let T be a 3-balan
ed triangulation of 3K 0v. Let us de�ne:X = f(a; i)ja 2 f0; : : : ; n� 1g and i 2 f0; 1; 2gg[f1g;A1 = ff(a; (i+ 1) mod 3); (a+ n; i);1gja = 0; 1; : : : ; n� 1g;A1 = ff(a; 0); (a; 1); (a; 2)gja = 0; 1; : : : ; n� 1and for ea
h T = (a�a; b�b ; 
�
) 2 TAT = ff(a; j); (b; (j + �b) mod 3); (
; (j + �b + �
) mod 3)gjj = 0; 1; 2g:In the same manner as in the proof of Theorem 2.1, (X;A) withA = A1SA1 S(ST2T AT )is an STS(3v).It is possible to develop an algebrai
 stru
ture similar to 3-tri algebras to �nd 3-balan
edtriangulations of 3K 0v. However the resulting stru
ture does not share the ni
e properties of3-tri algebras and we prefer to omit it.7 Con
lusionsTheorem 2.1 gives us a te
hnique to generalize one of the most important methods to 
on-stru
t Steiner triple systems. The real potential of this 
onstru
tion depends upon ourability to generate 3-balan
ed triangulations of 3Kv. The 3-tri algebras give some solutionsto this problem, but they are not the only possibility. The general problem of determiningall 3-balan
ed triangulations of 3Kv remains open.The 
onstru
tion of signable 3-tri algebras is not easy, we have studied some methodswhi
h are reported in [3℄. In this work we showed that it is possible to generate 3-tri algebrasappropriate for the 
onstru
tion of anti-Pas
h Stainer triple systems. These methods arebased on an interesting appli
ation of the eight queens problem.A
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