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Feli�u SagolsEletrial EngineeringCINVESTAVM�exioMarh 22, 2001AbstratWe present a nontrivial extension to Bose's method for the onstrution of Steinertriple systems, generalizing the traditional use of ommutative and idempotent quasi-groups to employ a new algebrai struture alled a 3-tri algebra. Links between Steinertriple systems and 2-(v,3,3) designs via 3-tri algebras are also explored.Keywords: Steiner triple system, quasigroup, latin square, Bose onstrution, Skolem on-strution, triangulation.1 BakgroundLet X be a �nite set. A set system or on�guration is a pair (X;A), where A � 2X . Theorder of the set system is jXj. The elements of X are points and the elements of A are bloks.A t-(v; k; �) design is a k-uniform set system (X;A) of order v suh that every t-subset of Xis ontained in preisely � bloks of A. A 2-(v; 3; 1) design is a Steiner triple system of orderv and is denoted by STS(v). A (k; `)-on�guration in an STS (X;A) is a subset of ` bloksin A whose union is a k-element subset of X. The Pash on�guration or quadrilateral isthe (6,4)-on�guration on elements (say) a; b; ; d; e; f with bloks fa; b; g; fa; d; eg; ff; d; bgand ff; ; eg. An STS is anti-Pash (or quadrilateral-free) if it does not ontain the (6,4)-on�guration.A 3-oriented graph is a graph in whih eah edge e (with endpoints x and y) has one ofthree possible orientations: positive, negative, or null oriented from x to y. The edge e ispositive oriented from x to y if and only if it is negative oriented from y to x; when e is nulloriented the roles of x and y an be freely interhanged. We draw a positive oriented edgefrom x to y by an arrow from x to y and a null oriented edge without arrows. A 3-orientedgraph is simple if, for every pair of verties x and y, the graph ontains at most one positive,one negative, and one null oriented edge from x to y. In a 3-oriented simple graph we anuse without ambiguity (x; y)1, (x; y)�1, and (x; y)0 to denote a positive, negative, and nulloriented edge from x to y, respetively. 1



2 C.J. Colbourn and F. SagolsLet G be a 3-oriented simple graph. A path P in G through the verties x0; : : : ; xn,n � 1, is denoted by P = x0; x�11 : : : ; x�nn where �1; : : : ; �n 2 f1;�1; 0g, if and only if P usesthe edges (x0; x1)�1 ; : : : ; (xn�1; xn)�n . When P is a yle we write P = (x�00 ; x�11 : : : ; x�n�1n�1 ),with �0 = �n. If �0+�1+: : :+�n�1 � 0 mod � for some � > 0, P is �-balaned. A two-fator ofG in whih all yles are �-balaned is �-balaned. A triangulation is a partition of the edgesin G in paths of length 3, and a triangulation is 3-balaned if all its paths are 3-balaned.As we soon see, 3-balaned triangulations of a 3-oriented simple graph are losely related toSteiner triple systems.The graph with v verties in whih eah pair of verties is joined by three parallel edgesis denoted by 3Kv, and 3Kv denotes the 3-oriented simple graph with v verties in whiheah pair x and y of verties is joined by a positive, a negative, and a null oriented edge fromx to y. For both graphs, the vertex sets V (3Kv) = V (3Kv) = f0; 1; : : : ; v � 1g.2 A generalization of Bose's methodBose's method [1℄ is one of the most important and well known paradigms in design theory.Our objetive is to develop a natural generalization.Theorem 2.1 Every 3-balaned triangulation of 3Kv yields an STS(3v).Proof: Let T be a 3-balaned triangulation of 3Kv. Let us de�ne:X = f(a; i)ja 2 f0; : : : ; v � 1g and i 2 f0; 1; 2gg;A1 = ff(a; 0); (a; 1); (a; 2)gj a 2 f0; : : : ; v � 1ggand for eah T = (a�a; b�b ; �) 2 TAT = ff(a; j); (b; (j + �b) mod 3); (; (j + �b + �) mod 3)gjj = 0; 1; 2g:AT is well-de�ned, sine if we use a di�erent representation of T , say (b�b ; �; a�a), we get:A0T = ff(b; k); (; (k + �) mod 3); (a; (k + � + �a) mod 3)gjk = 0; 1; 2g;Making the hange of variable k = (j + �b) mod 3, and applying the fat that �a + �b + � �0 mod 3, we �nd that A0T = AT . The other representations of T produe the same set.We laim that (X;A) with A = A1 S(ST2T AT ) is an STS(3v). In fat, let B =f(a; i); (b; j)g be a two-subset of X; if a = b then f(a; 0); (a; 1); (a; 2)g is the unique blok inA ontaining B; otherwise B is ontained in exatly one of the bloks in AT where T is theunique triangle in T ontaining the edge (a; b)(j�i) mod 3.Bose's method builds Steiner triple systems using a speial type of 3-balaned triangu-lations of 3Kv. A Bose triangulation is a 3-balaned triangulation of 3Kv suh that eah ofits triangles an be expressed as (a0; b1; �1) for appropriate elements a; b;  2 f0; : : : ; v� 1g.A latin square of order n is an n � n array, eah ell of whih ontains exatly one ofthe symbols in f0; : : : ; n� 1g, suh that eah row and eah olumn of the array ontains the



Triangulations and a generalization of Bose's method 3symbols in f0; : : : ; n� 1g exatly one. A quasigroup of order n is a pair (Q; Æ), where Q isa set of size n and Æ is a binary operation on Q suh that for every pair of elements a; b 2 Q,the equations a Æ x = b and y Æ a = b have unique solutions. The tabular representation of aquasigroup of order n is a latin square of order n.Proposition 2.2 Every Bose triangulation produes a ommutative and idempotent quasi-group. Conversely every ommutative and idempotent quasigroup produes a Bose triangu-lation.Proof Let T be a Bose triangulation of 3Kv. If Q = f0; : : : ; v � 1g and a; b 2 Q we de�nea Æ b = (  if (a0; 1; b�1) 2 Ta if a = bThe binary operation Æ is de�ned for every pair a; b 2 Q beause there exists exatly onetriangle in T ontaining the edge (a; b)0. The operation Æ is ommutative and idempotent,as follows. The equation a Æ x = b has only one solution in x beause only the triangle(a0; b1; x�1) in T ontains the edge (a; b)1 for some x, and the equation b Æ y = a has onlyone solution in y beause only the triangle (b0; a1; y�1) in T ontains the edge (a; b)�1 forsome y. Hene (Q; Æ) is a ommutative and idempotent quasigroup.In the other diretion, let (Q; Æ) be a ommutative and idempotent quasigroup. De�neT = f(a0; 1; b�1)ja; b 2 Q and a Æ b = g. Every triangle in this set is well-de�ned beause(a0; 1; b�1) = (b0; 1; a�1). Let a; b be arbitrarily hosen elements in Q, (a; b)0 belongs onlyto the triangle (a0; 1; b�1) for some  2 Q beause Æ is a well-de�ned binary operation. Then(a; b)1 belongs only to the triangle (a0; b1; x�1) where x is the unique solution to the equationaÆx = b; and (a; b)�1 belongs only to the triangle (b0; a1; y�1) where y is the unique solutionto the equation b Æ y = a. T is 3-balaned, and it is a Bose triangulation.If we take a ommutative and idempotent quasigroup (Q; Æ) of order v, build from it theBose triangulation T given by Proposition 2.2 and �nally build from T the STS(3v) given byTheorem 2.1, then the resulting STS is the same as that obtained from (Q; Æ) by using Bose'smethod diretly. Bose triangulations provide only one way to �nd 3-balaned triangulationsof 3Kv, but there are others. There are many possibilities, but we are interested in those3-balaned triangulations with additional algebrai struture.An uniform triangulation of 3Kv is a 3-balaned triangulation of 3Kv suh that eahof its triangles an be expressed as (a0; b1; �1) or (a0; b�1; 1) for appropriate elementsa; b;  2 f0; : : : ; v � 1g. Triangles of the �rst type are positive and those of the seondtype negative. A positive triangle annot be expressed as a negative one, nor vie versa. ABose triangulation does not permit the mixture of positive and negative triangles, but in anuniform triangulation we admit this possibility. Look the following uniform triangulation of3Kv for v = 7, graphially represented in Figure 1:T7 = f f00; 11; 2�1g; f40; 1�1; 01g; f60; 11; 4�1g; f10; 61; 4�1g; f40; 6�1; 21g;f20; 61; 3�1g; f20; 31; 6�1g; f10; 3�1; 21g; f50; 31; 1�1g; f30; 51; 1�1g;



4 C.J. Colbourn and F. Sagolsf10; 5�1; 61g; f60; 51; 0�1g; f60; 01; 5�1g; f30; 0�1; 61g; f40; 01; 3�1g;f00; 41; 3�1g; f30; 4�1; 51g; f50; 41; 2�1g; f50; 21; 4�1g; f00; 2�1; 51g;f00; 21; 1�1gg
2          0            4           6            2           1           5            6           3           4            5           0            1

1           4           2           3            1           6           0            3           5           2Figure 1: A uniform triangulation of 3K7When this triangulation is used in the onstrution of Theorem 2.1 we get an STS(21)isomorphi to the following, reading olumns as triples:000000000011111111122222222233333334444444555555666667777888899aabdd13579bdfhj3469afgi345678abe678begi5689abd789ab79beg9aef9abfgeedhfh2468aegik578bdehjk9fidjgkhadfkhjegkhjikhdfgjijhfkhbgjekdifiijigkkjA diret analysis shows that it is anti-Pash. It is well known (see [4℄) that Bose's methoddoes not produe an anti-Pash STS(21), so our extension is not trivial.3 3-tri algebrasIn the same way that Bose's method an be formulated in terms of ommutative and idempo-tent quasigroups, the onstrution given in Theorem 2.1 an be stated by using 3-tri algebras,algebrai strutures that generalize quasigroups.A 3-tri algebra1 (read this as three triangulation algebra) of order v > 0 is a pair � = (C; Æ)where C is a set with ardinality v and Æ is a binary, losed, ommutative and idempotentoperation over C suh that for every pair of distint elements a; b 2 C the equationsa Æ x = b (1)b Æ y = a (2)with unknowns x and y, satisfy one and only one of the onditions:1The seletion of the name \3-tri algebra" was diÆult. Certainly these strutures are a weakening ofquasigroups, so a name made of some pre�x like \near", \half", \meta" or something similar followed bythe word \quasigroup" ould be better. However these names do not make lear that the soure of 3-trialgebras are the 3-balaned triangulations. Other balaned partitions of the edges in a k-oriented graph,for some appropriate values of k, ould be de�ned, probably some of them produe new algebras useful indesign theory. The advantage of the name \3-tri algebra" is that it ould be easily generalized with a learmeaning in this ontext.



Triangulations and a generalization of Bose's method 51. There are exatly two solutions for x and none for y.2. There are exatly two solutions for y and none for x.3. There is exatly one solution for x and one for y.Every ommutative and idempotent quasigroup is a 3-tri algebra. One example of 3-trialgebra whih is not a quasigroup is the pair (f0; : : : ; 6g; Æ) where Æ is the operation shownin Figure 2. This is the 3-tri algebra used to generate the STS(21) given in Setion 2.Æ 0 1 2 3 4 5 60 0 2 1 4 1 2 51 2 1 3 5 6 3 52 1 3 2 6 6 4 33 4 5 6 3 0 4 04 1 6 6 0 4 2 15 2 3 4 4 2 5 06 5 5 3 0 1 0 6Figure 2: Multipliation table of a 3-tri algebraThe multipliation table of a 3-tri algebra has a struture similar to that of a uniformsquare. However, an element an appear twie (at most) in a row; an element j does notappear in a row i if and only if i appears twie in the row j. Any idempotent and symmetrimatrix with this property orresponds to a 3-tri algebra.4 3-tri algebras and 2-(v; 3; 3) designsOur main interest in 3-tri algebras is their apaity to generalize Bose's method. However,as we show here, they have a strong link with 2-(v; 3; 3) designs. Let � = (f0; : : : ; v� 1g; Æ)be a 3-tri algebra. For every unordered pair fi; jg of di�erent elements in f0; : : : ; v� 1g, theset T�;fi;jg def= fi; j; i Æ jg (or Tfi;jg when there is no onfusion with the 3-tri algebra) is thetriple indued by i and j in �. The set T� def= fTfi;jgjfi; jg � f0; : : : ; v � 1g; i 6= jg is the setof triples indued by �.Let � = (f0; 1; : : : ; 7g; Æ) be the 3-tri algebra with the operation in Figure 2, thenT� = f Tf0;1g = f0; 1; 2g; Tf0;2g = f0; 2; 1g; Tf0;3g = f0; 3; 4g; Tf0;4g = f0; 4; 1g;Tf0;5g = f0; 5; 2g; Tf0;6g = f0; 6; 5g; Tf1;2g = f1; 2; 3g; Tf1;3g = f1; 3; 5g;Tf1;4g = f1; 4; 6g; Tf1;5g = f1; 5; 3g; Tf1;6g = f1; 6; 5g; Tf2;3g = f2; 3; 6g;Tf2;4g = f2; 4; 6g; Tf2;5g = f2; 5; 4g; Tf2;6g = f2; 6; 3g; Tf3;4g = f3; 4; 0g;Tf3;5g = f3; 5; 4g; Tf3;6g = f3; 6; 0g; Tf4;5g = f4; 5; 2g; Tf4;6g = f4; 6; 1g;Tf5;6g = f5; 6; 0ggAs we an see it is a 2� (7; 3; 3) design, and in fat we have the following general result.



6 C.J. Colbourn and F. SagolsProposition 4.1 For any 3-tri algebra � of order v, T� is a 2-(v; 3; 3) design.Proof: Every pair of distint elements a; b 2 f0; : : : ; v�1g belongs to exatly three di�erenttriples in T�. One is Tfa;bg, and the other two are:Case 1: Tfa;x1g and Tfa;x2g where x1 and x2 are the two solutions to equation (1), orCase 2: Tfb;y1g and Tfb;y2g where y1 and y2 are the two solutions to equation (2), orCase 3: Tfa;x1g and Tfb;y1g where x1 and y1 are the solutions to equations (1) and (2).T� is also alled the 2-(v; 3; 3) design indued by �. Proposition 4.1 is a generalization ofthe well known fat (see [2℄, for example) that an idempotent and ommutative quasigroupan be used to produe a 2-(v; 3; 3) design. A onverse is valid for 3-tri algebras:Proposition 4.2 Every 2-(v; 3; 3) design generates a family of 3-tri algebras.Proof: Let (f0; : : : ; v � 1g; T ) be a 2-(v; 3; 3) design. Let GT be the bipartite graph withbipartition V1 = ffa; bgja 6= b; a; b 2 f0; : : : ; v � 1gg and V2 = T , two verties fi; jg 2 V1and T 2 V2 being joined by an edge if and only if fi; jg � T . Then GT is a 3-regular graph.We establish that eah of its perfet mathings produes a 3-tri algebra of order v.Let M � E(G) be one suh mathing. We use the notationM(i; j) = fi; j; kg if and onlyif (fi; jg; fi; j; kg) 2M . De�ne a binary operation ÆM on f0; : : : ; v � 1g byi ÆM j = ( k if i 6= j and M(i; j) = fi; j; kgi if i = jEvery set fa; bg 2 V1 is ontained in three and only three triples in T , so there exist twodi�erent elements  and d satisfying one of the following:Case 1: fa; bg belongs simultaneously toM(a; b),M(a; ) = fa; b; g andM(a; d) = fa; b; dg.Case 2: fa; bg belongs simultaneously toM(a; b),M(b; ) = fa; b; g andM(b; d) = fa; b; dg.Case 3: fa; bg belongs simultaneously toM(a; b),M(a; ) = fa; b; g andM(b; d) = fa; b; dg.The solutions for x and y to the equations a ÆM x = b and b ÆM y = a are as follows. InCase 1,  and d are solutions in x and y has no solution. In Case 2,  and d are solutions in yand x has no solution. Finally in Case 3,  is a solution in x and d a solution in y. Then ÆMis a ommutative and idempotent binary operation. We onlude that (f0; : : : ; v � 1g; ÆM)is a 3-tri algebra produed from M .



Triangulations and a generalization of Bose's method 75 Uniform triangulations and 3-tri algebrasAs we saw in Theorem 2.1, the generalization of Bose's onstrution rests on our ability to�nd 3-balaned triangulations of 3Kv. The 3-tri algebras form an intermediate step between3-balaned triangulations and quasigroups. In fat, 3-tri algebras of order v are `almost'equivalent to uniform triangulations of 3Kv.Proposition 5.1 There exist a one to one orrespondene between the set of uniform tri-angulations of 3Kv and the set of 3-tri algebras of order v.Proof: Let U be a uniform triangulation of 3Kv. We build the 3-tri algebra �U =(f0; : : : ; v � 1g; ÆU) where i ÆU j def= k if and only if one of the following three onditionsis satis�ed:1. i = j = k.2. (i0; k1; j�1) 2 U .3. (i0; k�1; j1) 2 U .Then ÆU is a ommutative and idempotent binary operation. On the other hand, if a,b are di�erent elements in f0; : : : ; v � 1g, then (a; b)0 2 T0, (a; b)1 2 T1 and (a; b)�1 2 T�1where T0; T1 and T�1 are 3-di�erent triangles in U . There exist two di�erent elements ; d 2f0; : : : ; v � 1g suh that only one of the following ases is satis�ed:Case 1: T1 = (a0; b1; �1) and T�1 = (a0; b�1; d1).Case 2: T1 = (b0; a�1; 1) and T�1 = (b0; a1; d�1).Case 3: T1 = (a0; b1; �1) and T�1 = (b0; a1; d�1).The solutions in x and y to the equations a ÆU x = b and b ÆU y = a are as follows. InCase 1,  and d are solutions in x, and y has no solution. In Case 2,  and d are solutionsin y, and x has no solution. Finally in Case 3,  is a solution in x and d a solution in y. Weonlude that �U is a 3-tri algebra.The onverse of this proposition does not hold. Only some 3-tri algebras, to be harater-ized, produe uniform 3-tri algebras of 3Kv. Let � = (f0; : : : ; v� 1g; Æ) be a 3-tri algebra oforder v. The Bose graph of �, denoted B�, is a graph with the triples in T� as verties, twoverties Tfi1;j1g and Tfi2;j2g being joined by an edge if and only if the orresponding triplesshare a pair fi; jg suh that fi; jg 6= fi1; j1g and fi; jg 6= fi2; j2g. The same idea an beexpressed in terms of � by saying that Tfi1;j1g and Tfi2;j2g are adjaent if one of the followingonditions is true (as shown in Figure 3):Condition 1: j1 = i2 Æ j2 and i2 = i1 Æ j1.Condition 2: j1 = i2 and i1 Æ j1 = i2 Æ j2.



8 C.J. Colbourn and F. Sagols

 1                         1    2                        2

1    1     2    2i   = i     j                    j                           i     j  =  i     j
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a) Condition 1 (positive edge)          b) Condition 2 (negative edge)

2     1    1                   2

1                         1    2     2Figure 3: Adjaenies in B�
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Figure 4: The Bose graph of the 3-tri algebra in Setion 3



Triangulations and a generalization of Bose's method 9An edge in B� is positive if it satis�es Condition 1; otherwise it is negative. Figure 4depits the Bose graph of the 3-tri algebra in Figure 2. In this ase the graph is a yle.Lemma 5.2 If � = (f0; : : : ; v�1g; Æ) is a 3-tri algebra, then B� is a 2-regular simple graph.Proof: A triple Tfa;bg = fa; b; g in V (B�) = T� is only adjaent to triples ontainingfa; g and fb; g. Sine T� is a 2-(v; 3; 3) design, other than Tfa;bg there are only two triplesontaining fa; g. One is Tfa;g, but it is not adjaent to Tfa;bg. The other is one of thefollowing two possibilities:Case 1: Tfa;xg where a Æ x =  and x 6= b; orCase 2: Tf;yg where  Æ y = a.The ase depends upon the solutions of the equations a Æ x =  and  Æ y = a. In eithersituation suh a triple is the only one adjaent to Tfa;bg whih ontains fa; g. Similarly Tfa;bgis also adjaent to only one of the following triples ontaining fb; g:Case 1': Tfb;x0g where b Æ x0 =  and x0 6= a; orCase 2': Tf;y0g where  Æ y0 = b.The triple from Cases 1 and 2, Tfa;bg, and the triple from Cases 1' and 2' are di�erent, soTfa;bg has degree two and its inident edges are neither loops nor parallel edges in B�. Weonlude that this is a 2-regular simple graph.Let � be a 3-tri algebra of order v. Any funtion � : ffi; jgji 6= j and i; j 2 f0; : : : ; v �1gg ! f+;�g suh that for every edge e = (Tfa;bg; Tf;dg) in E(B�) �(a; b) = �(; d) if andonly if e is positive is a signing of �. If � has at least one signing it is signable; otherwise itis unsignable.Lemma 5.3 A 3-tri algebra � is signable if and only if every yle in B� has an evennumber of negative edges.Proof: Let � be a signing of � and let P = Tfa0;b0g; : : : ; Tfak ;bkg be a path in B�, �(ak; bk) =�(a0; b0)(�1)n where n is the number of negative edges in P ; so � is well de�ned if and onlyif the number of negative edges in every yle of B� is even.The multipliation table of an unsignable 3-tri algebra is given in Figure 5. It is unsignablebeause its Bose graph ontains the yle (Tf4;5g; Tf5;6g; Tf4;6g) in whih the three edges arenegative. Let � = (f0; : : : ; v � 1g; Æ) be a signable 3-tri algebra, and let � be one of itssignings. For every pair a; b of di�erent elements in f0; : : : ; v � 1g, the 3-oriented yleT�;�;a;b def= (a0; (aÆb)�(a;b); b��(a;b)) (or T a;b when there is no onfusion with � and �) is the 3-oriented yle indued by �, �, a and b. The set T �;� def= fT a;bja 6= b and a; b 2 f0; : : : ; v�1ggis the set of 3-yles indued by � and �. The sets T� and T �;� are essentially the same,but in the latter we have hosen orientations.



10 C.J. Colbourn and F. SagolsÆ 0 1 2 3 4 5 60 0 2 3 1 3 2 11 2 1 4 5 5 6 22 3 4 2 6 5 3 43 1 5 6 3 1 6 44 3 5 5 1 4 0 05 2 6 3 6 0 5 06 1 2 4 4 0 0 6Figure 5: Multipliation table of an unsignable 3-tri algebraProposition 5.4 If � = (f0; : : : ; v � 1g; Æ) is a signable 3-tri algebra of order v and � isone of its signings, then T �;� is a uniform triangulation of 3Kv.Proof: Let a; b be two di�erent elements in f0; : : : ; v � 1g. We establish that eah of theedges (a; b)0; (a; b)1 and (a; b)�1 belongs to exatly one 3-yle in T �;�. Evidently (a; b)0belongs only to T a;b. Now we have three possibilities:Case 1: The equation a Æ x = b has two solutions in x, say  and d. (Tf;ag; Tfa;dg) isa negative edge in B�, so �(a; d) = ��(a; ), and thus (a; b)�(a;) belongs to T a; =(a0; b�(a;); ��(a;)) and (a; b)��(a;) belongs to T a;d = (a0; b��(a;); �(a;)). No other 3-yle in T �;� ontains fa; bg.Case 2: The equation b Æ y = a has two solutions in y. This is similar to Case 1.Case 3: The equations a Æ x = b and b Æ y = a have one solution in x and one in y,say x =  and y = d. (Tf;ag; Tfb;dg) is a positive edge in B�, so �(b; d) = �(a; ),and thus (a; b)�(a;) belongs to T a; = (a0; b�(a;); ��(a;)) and (a; b)��(a;) belongs toT b;d = (b0; a�(b;d); ��(b;d)). No other 3-yle in T �;� ontains fa; bg.Sine all 3-yles in T �;� have the form of a uniform triangulation we onlude that it isa uniform triangulation of 3Kv.6 The Skolem methodWe use the idea of Theorem 2.1 to generalize the Skolem method (see [2℄, for example). Letv be a positive even integer, say v = 2n. Denote by 3K 0v the graph 3Kv � f(a; n+ a)�1ja 2f0; : : : ; n � 1ggSf(n + a; n + a)1ja 2 f0; : : : ; ngg. Then 3K 0v is not simple, sine we havereplaed a perfet mathing of negative edges in 3Kv by positive loops on the vertiesn; n+ 1; : : : ; 2n� 1.Theorem 6.1 Every 3-balaned triangulation of 3K 0v yields an STS(3v + 1).



Triangulations and a generalization of Bose's method 11Proof: Let T be a 3-balaned triangulation of 3K 0v. Let us de�ne:X = f(a; i)ja 2 f0; : : : ; n� 1g and i 2 f0; 1; 2gg[f1g;A1 = ff(a; (i+ 1) mod 3); (a+ n; i);1gja = 0; 1; : : : ; n� 1g;A1 = ff(a; 0); (a; 1); (a; 2)gja = 0; 1; : : : ; n� 1and for eah T = (a�a; b�b ; �) 2 TAT = ff(a; j); (b; (j + �b) mod 3); (; (j + �b + �) mod 3)gjj = 0; 1; 2g:In the same manner as in the proof of Theorem 2.1, (X;A) withA = A1SA1 S(ST2T AT )is an STS(3v).It is possible to develop an algebrai struture similar to 3-tri algebras to �nd 3-balanedtriangulations of 3K 0v. However the resulting struture does not share the nie properties of3-tri algebras and we prefer to omit it.7 ConlusionsTheorem 2.1 gives us a tehnique to generalize one of the most important methods to on-strut Steiner triple systems. The real potential of this onstrution depends upon ourability to generate 3-balaned triangulations of 3Kv. The 3-tri algebras give some solutionsto this problem, but they are not the only possibility. The general problem of determiningall 3-balaned triangulations of 3Kv remains open.The onstrution of signable 3-tri algebras is not easy, we have studied some methodswhih are reported in [3℄. In this work we showed that it is possible to generate 3-tri algebrasappropriate for the onstrution of anti-Pash Stainer triple systems. These methods arebased on an interesting appliation of the eight queens problem.AknowledgmentsResearh is supported by the Army Researh OÆe (U.S.A.) under grant number DAAG55-98-1-0272 (Colbourn), and the Consejo Naional de Cienia y Tenolog��a (M�exio) undergrant number CONACyT-983017 (Sagols).Referenes[1℄ R. C. Bose. On the onstrution of balaned inomplete blok designs, Ann. Eugenis9 (1939), 353-399.[2℄ C.J. Colbourn and A. Rosa, Triple Systems, Oxford University Press, 1999.[3℄ C.J. Colbourn and F. Sagols, NS1D0 sequenes, 3-triangulations and anti-Pash STSs.Aepted in Ars Combinat. in marh 2000.



12 C.J. Colbourn and F. Sagols[4℄ M.J. Grannell, T.S. Griggs, and J.S. Phelan, A new look at an old onstrution forSteiner triple systems, Ars Combinat. 25A (1988), 55-60.


