Triangulations and a Generalization of Bose’s Method

Charles Colbourn Felit Sagols
Computer Science Electrical Engineering
University of Vermont CINVESTAV
Burlington, VT 05405 México
U.S.A.

March 22, 2001

Abstract
We present a nontrivial extension to Bose’s method for the construction of Steiner
triple systems, generalizing the traditional use of commutative and idempotent quasi-
groups to employ a new algebraic structure called a 3-tri algebra. Links between Steiner
triple systems and 2-(v,3,3) designs via 3-tri algebras are also explored.

Keywords: Steiner triple system, quasigroup, latin square, Bose construction, Skolem con-
struction, triangulation.

1 Background

Let X be a finite set. A set system or configuration is a pair (X, A), where A C 2%, The
order of the set system is | X|. The elements of X are points and the elements of A are blocks.
A t-(v, k, \) design is a k-uniform set system (X, .A) of order v such that every t-subset of X
is contained in precisely A blocks of A. A 2-(v, 3, 1) design is a Steiner triple system of order
v and is denoted by STS(v). A (k, ¢)-configuration in an STS (X, .A) is a subset of ¢ blocks
in A whose union is a k-element subset of X. The Pasch configuration or quadrilateral is
the (6,4)-configuration on elements (say) a, b, ¢, d, e, f with blocks {a,b,c}, {a,d, e}, {f, d, b}
and {f,c,e}. An STS is anti-Pasch (or quadrilateral-free) if it does not contain the (6,4)-
configuration.

A 8-oriented graph is a graph in which each edge e (with endpoints = and y) has one of
three possible orientations: positive, negative, or null oriented from x to y. The edge ¢ is
positive oriented from x to y if and only if it is negative oriented from y to x; when e is null
oriented the roles of x and y can be freely interchanged. We draw a positive oriented edge
from z to y by an arrow from z to y and a null oriented edge without arrows. A 3-oriented
graph is simple if, for every pair of vertices x and y, the graph contains at most one positive,
one negative, and one null oriented edge from x to y. In a 3-oriented simple graph we can
use without ambiguity (z,y)', (z,y)"", and (z,y)" to denote a positive, negative, and null
oriented edge from x to y, respectively.



Let G be a 3-oriented simple graph. A path P in G through the vertices xzg,...,x,,
n > 1, is denoted by P = z, "' o, 2% where 6,...,0, € {1, 1,0}, if and only if P uses
the edges (z9,21)",..., (Tp_1,7,)". When P is a cycle we write P = (zb0, 20" ...,mi”jf),
with 8y = 60,,. If 0y+60,+...+60,,_1 = 0 mod X for some A > 0, P is A-balanced. A two-factor of
G in which all cycles are A\-balanced is A-balanced. A triangulation is a partition of the edges
in G in paths of length 3, and a triangulation is 3-balanced if all its paths are 3-balanced.
As we soon see, 3-balanced triangulations of a 3-oriented simple graph are closely related to
Steiner triple systems.

The graph with v vertices in which each pair of vertices is joined by three parallel edges
is denoted by 3K,, and 3K, denotes the 3-oriented simple graph with v vertices in which
each pair x and y of vertices is joined by a positive, a negative, and a null oriented edge from
x to y. For both graphs, the vertex sets V(3K,) = V(3K,) = {0,1,...,v —1}.

2 A generalization of Bose’s method

Bose’s method [1] is one of the most important and well known paradigms in design theory.
Our objective is to develop a natural generalization.

Theorem 2.1 Every 3-balanced triangulation of 3K, yields an STS(3v).

Proof: Let 7 be a 3-balanced triangulation of 3K,. Let us define:
X ={(a,i)la e {0,...,0—1} and i € {0,1,2}},

Ar = {{(a,0),(a,1), (a,2)} a € {0,...,v = 1}}
and for each T = (a%,b% %) e T

Ar = {{(a,j), (b, (j + 6) mod 3), (¢, (j + 0 + 6.) mod 3)}|j = 0,1, 2}.
Ar is well-defined, since if we use a different representation of T, say (b%, %, a%), we get:
Al = {{(b,k), (¢, (k + 6.) mod 3), (a, (k + 0.+ 6,) mod 3)}|k = 0,1,2},

Making the change of variable k = (j + 6,) mod 3, and applying the fact that 6, + 6, + 6, =
0 mod 3, we find that A}, = Ar. The other representations of T produce the same set.

We claim that (X, A) with A = A;U(Urer Ar) is an STS(3v). In fact, let B =
{(a,1),(b,7)} be a two-subset of X; if a = b then {(a,0), (a,1), (a,2)} is the unique block in
A containing B; otherwise B is contained in exactly one of the blocks in Ar where T is the
unique triangle in 7~ containing the edge (a, b))V~ m0d3 g

Bose’s method builds Steiner triple systems using a special type of 3-balanced triangu-
lations of 3K,. A Bose triangulation is a 3-balanced triangulation of 3K, such that each of
its triangles can be expressed as (a”,b', ¢™') for appropriate elements a, b, c € {0,...,v—1}.

A latin square of order n is an n x n array, each cell of which contains exactly one of
the symbols in {0,...,n — 1}, such that each row and each column of the array contains the



symbols in {0,...,n — 1} exactly once. A quasigroup of order n is a pair (@, o), where @ is
a set of size n and o is a binary operation on () such that for every pair of elements a,b € Q,
the equations a o x = b and y o a = b have unique solutions. The tabular representation of a
quasigroup of order n is a latin square of order n.

Proposition 2.2 Fvery Bose triangulation produces a commutative and idempotent quasi-
group. Conversely every commutative and idempotent quasigroup produces a Bose triangu-
lation.

Proof Let 7 be a Bose triangulation of 3K,,. If Q = {0,...,v — 1} and a,b € Q we define

o001 g
aob:{c if (a’,¢', 07" eT

a ifa=0b

The binary operation o is defined for every pair a,b € @) because there exists exactly one
triangle in 7 containing the edge (a,b)’. The operation o is commutative and idempotent,
as follows. The equation @ o x = b has only one solution in x because only the triangle
(a®,b',27") in T contains the edge (a,b)' for some x, and the equation b oy = a has only
one solution in y because only the triangle (b°,a',y7!) in 7 contains the edge (a,b)"! for
some y. Hence (@, o) is a commutative and idempotent quasigroup.

In the other direction, let (@, o) be a commutative and idempotent quasigroup. Define
T = {(a®c", b "]a,b € Q and a o b = c}. Every triangle in this set is well-defined because
(a® ct,bt) = (B%,ctya™t). Let a,b be arbitrarily chosen elements in @, (a,b)? belongs only
to the triangle (a°, ¢, b™1) for some ¢ € @ because o is a well-defined binary operation. Then
(a,b)! belongs only to the triangle (a°, b', 7!) where x is the unique solution to the equation
aox = b; and (a,b) " belongs only to the triangle (b, a',y~') where y is the unique solution
to the equation boy = a. T is 3-balanced, and it is a Bose triangulation. m

If we take a commutative and idempotent quasigroup (@, o) of order v, build from it the
Bose triangulation 7 given by Proposition 2.2 and finally build from 7" the STS(3v) given by
Theorem 2.1, then the resulting STS is the same as that obtained from (@, o) by using Bose’s
method directly. Bose triangulations provide only one way to find 3-balanced triangulations
of 3K,, but there are others. There are many possibilities, but we are interested in those
3-balanced triangulations with additional algebraic structure.

An uniform triangulation of 3K, is a 3-balanced triangulation of 3K, such that each
of its triangles can be expressed as (a’,b',c¢™') or (a®,b7',¢") for appropriate elements
a,b,c € {0,...,v — 1}. Triangles of the first type are positive and those of the second
type negative. A positive triangle cannot be expressed as a negative one, nor vice versa. A
Bose triangulation does not permit the mixture of positive and negative triangles, but in an
uniform triangulation we admit this possibility. Look the following uniform triangulation of
3K, for v = 7, graphically represented in Figure 1:

,7.7 = { {007117271}7{407171701}7{607117471}7{107617471}7{407671721}7
{20’ 61 ’ 37] }’ {20’ 31 ’ 67] }’ {10’ 37]’ 2] }’ {50’ 3]’ 171}’ {30’ 5]’ 171}’



{107 571’ 61}, {60, 51’ Ofl}’ {60, 01, 571}’ {30’ 071’ 61}, {40’ 01’ 371}’
{007417371}7 {3074717 51}7 {507417271}7 {507 217471}7 {007 271751}7
{0%2",171}}

Figure 1: A uniform triangulation of 3K;

When this triangulation is used in the construction of Theorem 2.1 we get an STS(21)
isomorphic to the following, reading columns as triples:

000000000011111111122222222233333334444444555555666667777888899%aabccdd
13579bdfhj3469acfgi345678abe678begib689abd789abc79begaef9abfcgceedhth
2468acegikb78bdehjk9fidcjgkhadcfkhjecgkhjikhdfgjijhfkhbgjekdifiijigkk]

A direct analysis shows that it is anti-Pasch. It is well known (see [4]) that Bose’s method
does not produce an anti-Pasch STS(21), so our extension is not trivial.

3 3-tri algebras

In the same way that Bose’s method can be formulated in terms of commutative and idempo-
tent quasigroups, the construction given in Theorem 2.1 can be stated by using 3-tri algebras,
algebraic structures that generalize quasigroups.

A 3-tri algebra® (read this as three triangulation algebra) of order v > 0is a pair ¥ = (C, o)
where C' is a set with cardinality v and o is a binary, closed, commutative and idempotent
operation over C' such that for every pair of distinct elements a,b € C' the equations

aox = b (1)
boy = a (2)

with unknowns x and y, satisfy one and only one of the conditions:

!The selection of the name “3-tri algebra” was difficult. Certainly these structures are a weakening of
quasigroups, so a name made of some prefix like “near”, “half”, “meta” or something similar followed by
the word “quasigroup” could be better. However these names do not make clear that the source of 3-tri
algebras are the 3-balanced triangulations. Other balanced partitions of the edges in a k-oriented graph,
for some appropriate values of k, could be defined, probably some of them produce new algebras useful in
design theory. The advantage of the name “3-tri algebra” is that it could be easily generalized with a clear
meaning in this context.



1. There are exactly two solutions for z and none for .
2. There are exactly two solutions for y and none for z.

3. There is exactly one solution for = and one for y.

Every commutative and idempotent quasigroup is a 3-tri algebra. One example of 3-tri
algebra which is not a quasigroup is the pair ({0,...,6},0) where o is the operation shown
in Figure 2. This is the 3-tri algebra used to generate the STS(21) given in Section 2.

L W O Ut W = N~
W k= O OO N W N
O = O WO Ot xlWw
— N e O OO
O TN = =W N Ot
OO = O WOt oy

YOl W N = OO0
TN — =N OO

Figure 2: Multiplication table of a 3-tri algebra

The multiplication table of a 3-tri algebra has a structure similar to that of a uniform
square. However, an element can appear twice (at most) in a row; an element j does not
appear in a row i if and only if 7 appears twice in the row j. Any idempotent and symmetric
matrix with this property corresponds to a 3-tri algebra.

4 3-tri algebras and 2-(v, 3,3) designs

Our main interest in 3-tri algebras is their capacity to generalize Bose’s method. However,
as we show here, they have a strong link with 2-(v, 3, 3) designs. Let T = ({0,...,v — 1}, 0)
be a 3-tri algebra. For every unordered pair {i, j} of different elements in {0,...,v — 1}, the

set T fi ) o {i,7,107} (or Ty ;3 when there is no confusion with the 3-tri algebra) is the
triple induced by i and j in Y. The set Ty def {Tupnl{i, 7} € {0,...,v = 1},i # j} is the set
of triples induced by Y.

Let T = ({0,1,...,7},0) be the 3-tri algebra with the operation in Figure 2, then

Tr ={ Ty =1{0,1,2}, Tiopy = {0, 2,1}, T3 = {0, 3,4}, Tyo,0y = {0,4, 1},
T{075} = {0, 2, 2},T{076} = {0, 6, 5},T{172} = {1, 2, 3},T{],3} = {1, 3, 5},
Tray =1{1,4,6}, Tisy = {1,5,3}, Truey = {1,6,5}, Tia3y = {2, 3,6},
T{274} ={2,4, 6},T{275} =12, 5,4},T{276} ={2,6, 3},T{3=4} = {3,4,0},
T{375} = {3, 5,4},T{376} = {3, 6, 0},T{475} = {4, 9, 2},T{4’6} = {4, 6, 1},
T{576} = {576’0}}

As we can see it is a 2 — (7, 3, 3) design, and in fact we have the following general result.



Proposition 4.1 For any 3-tri algebra T of order v, Ty is a 2-(v,3,3) design.

Proof: Every pair of distinct elements a,b € {0,...,v— 1} belongs to exactly three different
triples in 7y. One is Ty, 4y, and the other two are:

Case 1: Ty, 4,y and Ty, 4, where z; and z, are the two solutions to equation (1), or
Case 2: Tpyy,y and T,y where y; and y, are the two solutions to equation (2), or

Case 3: T(44,y and Ty, ) where z; and y; are the solutions to equations (1) and (2). m

Tx is also called the 2-(v, 3, 3) design induced by Y. Proposition 4.1 is a generalization of
the well known fact (see [2], for example) that an idempotent and commutative quasigroup
can be used to produce a 2-(v, 3, 3) design. A converse is valid for 3-tri algebras:

Proposition 4.2 Every 2-(v,3,3) design generates a family of 3-tri algebras.

Proof: Let ({0,...,v — 1}, 7T) be a 2-(v, 3,3) design. Let G be the bipartite graph with
bipartition Vi = {{a,b}|a # b,a,b € {0,...,v — 1}} and Vo = T, two vertices {i,j} € V}
and T' € V5 being joined by an edge if and only if {4, 7} C T. Then G is a 3-regular graph.
We establish that each of its perfect matchings produces a 3-tri algebra of order v.
Let M C E(G) be one such matching. We use the notation M (i, j) = {i, j, k} if and only
if ({i,7},{4,7,k}) € M. Define a binary operation oy, on {0,...,v — 1} by
o { ko ifi+# jand M(i,j) = {i,j,k}
1oy =4 . e
i ifi=y
Every set {a,b} € V] is contained in three and only three triples in 7, so there exist two
different elements ¢ and d satisfying one of the following:

Case 1: {a, b} belongs simultaneously to M(a,b), M(a,c) = {a,b,c} and M (a,d) = {a, b, d}.
Case 2: {a, b} belongs simultaneously to M(a,b), M (b, c) = {a,b,c} and M (b,d) = {a,b,d}.

Case 3: {a, b} belongs simultaneously to M (a,b), M(a,c) = {a,b,c} and M (b,d) = {a,b,d}.

The solutions for = and y to the equations a oy, x = b and boy; y = a are as follows. In
Case 1, ¢ and d are solutions in 2 and y has no solution. In Case 2, ¢ and d are solutions in y
and z has no solution. Finally in Case 3, ¢ is a solution in x and d a solution in y. Then o,
is a commutative and idempotent binary operation. We conclude that ({0,...,v — 1},0p)
is a 3-tri algebra produced from M. m



5 Uniform triangulations and 3-tri algebras

As we saw in Theorem 2.1, the generalization of Bose’s construction rests on our ability to
find 3-balanced triangulations of 3K,. The 3-tri algebras form an intermediate step between
3-balanced triangulations and quasigroups. In fact, 3-tri algebras of order v are ‘almost’
equivalent to uniform triangulations of 3K,,.

Proposition 5.1 There exist a one to one correspondence between the set of uniform tri-
angulations of 3K, and the set of 3-tri algebras of order v.

Proof: Let U be a uniform triangulation of 3K,. We build the 3-tri algebra Y, =
({0,...,v — 1},04) where i oy j © & if and only if one of the following three conditions

is satisfied:
l.i=7=k.
2. (% k' ;7Y el.
3. (i% kL 5 eld.

Then oy is a commutative and idempotent binary operation. On the other hand, if a,
b are different elements in {0,...,v — 1}, then (a,0)" € Ty, (a,b)' € T} and (a,b)"' € T,
where Ty, T} and T_; are 3-different triangles in U. There exist two different elements ¢, d €
{0,...,v — 1} such that only one of the following cases is satisfied:

Case 1: Ty = (a®, 0!, ¢ ) and Ty = (a°, 071, d").
Case 2: Ty = (0%, a ', ¢') and Ty = (0°, a',d7 ).

Case 3: Ty = (a®, b, ¢ ) and Ty = (0°,a',d7 ).

The solutions in x and y to the equations a oy x = b and b oy y = a are as follows. In
Case 1, ¢ and d are solutions in x, and y has no solution. In Case 2, ¢ and d are solutions
in y, and = has no solution. Finally in Case 3, ¢ is a solution in z and d a solution in y. We
conclude that Y is a 3-tri algebra. m

The converse of this proposition does not hold. Only some 3-tri algebras, to be character-
ized, produce uniform 3-tri algebras of 3K,. Let T = ({0,...,v — 1}, 0) be a 3-tri algebra of
order v. The Bose graph of T, denoted B~, is a graph with the triples in 7y as vertices, two
vertices Ty;, j,y and Ty, j,3 being joined by an edge if and only if the corresponding triples
share a pair {i,j} such that {i,j} # {i1,71} and {i,5} # {is,jo}. The same idea can be
expressed in terms of T by saying that Ty, ; and Ty, ;,, are adjacent if one of the following
conditions is true (as shown in Figure 3):

Condition 1: j; = i9 0 jy and i3 = iy o jj.

Condition 2: j; = 19 and 27 0 j; = 19 0 Js.
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Figure 3: Adjacencies in By
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Figure 4: The Bose graph of the 3-tri algebra in Section 3



An edge in By is positive if it satisfies Condition 1; otherwise it is negative. Figure 4
depicts the Bose graph of the 3-tri algebra in Figure 2. In this case the graph is a cycle.

Lemma 5.2 If YT = ({0,...,v—1},0) is a 3-tri algebra, then By is a 2-reqular simple graph.

Proof: A triple Ty, = {a,b,c} in V(By) = Ty is only adjacent to triples containing
{a,c} and {b, c}. Since Ty is a 2-(v, 3, 3) design, other than Ty, there are only two triples
containing {a,c}. One is T{a.y, but it is not adjacent to Ty,py. The other is one of the
following two possibilities:

Case 1: T{,4) where aox = c and x # b; or

Case 2: T{.,) where coy = a.

The case depends upon the solutions of the equations a o x = ¢ and coy = a. In either
situation such a triple is the only one adjacent to T,y which contains {a, c}. Similarly Tiap
is also adjacent to only one of the following triples containing {b, c}:

Case 1": Ty where bo 2’ = ¢ and 2’ # a; or

Case 2: T(., where coy' = b.

The triple from Cases 1 and 2, Ty, ), and the triple from Cases 1" and 2’ are different, so
Tiapy has degree two and its incident edges are neither loops nor parallel edges in By. We
conclude that this is a 2-regular simple graph. m

Let T be a 3-tri algebra of order v. Any function o : {{4,j}|i # j and i,j € {0,...,v —
1}} = {4, —} such that for every edge e = (T{ap}, Tic,ay) in E(By) o(a,b) = o(c,d) if and
only if e is positive is a signing of T. If T has at least one signing it is signable; otherwise it
is unsignable.

Lemma 5.3 A 3-tri algebra Y is signable if and only if every cycle in By has an even
number of negative edges.

Proof: Let o be a signing of T and let P = T4 40}, - - -5 T7a, 5,1 be @ path in By, o(ay, by) =
o(ag, by)(—1)™ where n is the number of negative edges in P; so o is well defined if and only
if the number of negative edges in every cycle of By is even. m

The multiplication table of an unsignable 3-tri algebra is given in Figure 5. It is unsignable
because its Bose graph contains the cycle (Ti45y, 756}, T4,6y) in which the three edges are
negative. Let T = ({0,...,v — 1},0) be a signable 3-tri algebra, and let ¢ be one of its
signings. For every pair a,b of different elements in {0,...,v — 1}, the 3-oriented cycle

T oap (a0, (aob)o(ad) polab)) (or T, when there is no confusion with Y and o) is the 3-
oriented cycle induced by Y, o, a and b. The set T, def {Tupla #band a,be {0,...,v-1}}
is the set of 3-cycles induced by YT and o. The sets Ty and Ty, are essentially the same,
but in the latter we have chosen orientations.



o]0 1 2 3 4 5 6
0{0 2 3 1 3 2 1
112 1 4 5 5 6 2
213 4 2 6 5 3 4
311 5 6 3 1 6 4
413 5 5 1 4 0 0
(2 6 3 6 0 5 0
61 2 4 4 0 0 6

Figure 5: Multiplication table of an unsignable 3-tri algebra

Proposition 5.4 If Y = ({0,...,v — 1},0) is a signable 3-tri algebra of order v and o is
one of its signings, then T, is a uniform triangulation of 3K ,.

Proof: Let a,b be two different elements in {0,...,v — 1}. We establish that each of the
edges (a,0)%, (a,b)" and (a,b)”" belongs to exactly one 3-cycle in Ty ,. Evidently (a,b)°

belongs only to 7', ;. Now we have three possibilities:

Case 1: The equation a o x = b has two solutions in z, say ¢ and d. (Ti.q}, T{a,q)) is
a negative edge in By, so o(a,d) = —o(a,c), and thus (a,b)’@) belongs to T,. =
(a® b7(®9) ¢=o(a9)) and (a,b) 7@ belongs to Toq = (a®,b77(*) ¢7(49)) No other 3-
cycle in Ty, contains {a,b}.

Case 2: The equation b oy = a has two solutions in y. This is similar to Case 1.

Case 3: The equations a oz = b and b oy = a have one solution in x and one in y,
say = ¢ and y = d. (T{ca}, Tip,ay) is a positive edge in By, so o(b,d) = o(a,c),
and thus (a,b)?® belongs to T,, = (a’ @) ¢} and (a,b)7(*) belongs to
Tpa= (b°,a7®D c=o:d)) No other 3-cycle in T, contains {a,b}.

Since all 3-cycles in Ty, have the form of a uniform triangulation we conclude that it is
a uniform triangulation of 3K ,. m

6 The Skolem method

We use the idea of Theorem 2.1 to generalize the Skolem method (see [2], for example). Let
v be a positive even integer, say v = 2n. Denote by 3K, the graph 3K, — {(a,n +a) |a €
{0,....n —1}}U{(n+ a,n 4+ a)'|a € {0,...,n}}. Then 3K, is not simple, since we have
replaced a perfect matching of negative edges in 3K, by positive loops on the vertices
n,n+1,...,2n—1.

Theorem 6.1 FEvery 3-balanced triangulation of 3?; yields an STS(3v +1).



Proof: Let 7 be a 3-balanced triangulation of 3?:,. Let us define:

X ={(a,i)]ae{0,....,n— 1} and i € {0,1,2} } | J{oc},

Ao = {{(a, (i 4+ 1) mod 3), (a + n,i),oc}la=0,1,...,n — 1},
A = {{(a,0), (a,1),(a,2)}a=0,1,...,n—1
and for each T = (a% 0%, c%) e T

Ar = {{(a,j), (b, (§ + 0y) mod 3), (¢, (j + 0y + 6.) mod 3)}|j = 0,1, 2}.

In the same manner as in the proof of Theorem 2.1, (X, A) with A = A, U A1 U(Urer A7)
is an STS(3v).

It is possible to develop an algebraic structure similar to 3-tri algebras to find 3-balanced
triangulations of 3K,. However the resulting structure does not share the nice properties of
3-tri algebras and we prefer to omit it.

7 Conclusions

Theorem 2.1 gives us a technique to generalize one of the most important methods to con-
struct Steiner triple systems. The real potential of this construction depends upon our
ability to generate 3-balanced triangulations of 3K,. The 3-tri algebras give some solutions
to this problem, but they are not the only possibility. The general problem of determining
all 3-balanced triangulations of 3K, remains open.

The construction of signable 3-tri algebras is not easy, we have studied some methods
which are reported in [3]. In this work we showed that it is possible to generate 3-tri algebras
appropriate for the construction of anti-Pasch Stainer triple systems. These methods are
based on an interesting application of the eight queens problem.
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