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1. introduction

Linear dynamics is a young and rapidly evolving branch of func-

tional analysis, which was probably born in 1982 with the Toronto

Ph.D. thesis of C. Kitai [10]. It has become rather popular, thanks

to the efforts of many mathematicians (see [5, 6]). In particular, hy-

percyclicity and supercyclicity of weighted bilateral shifts were char-

acterized by Salas [16, 17]. In [18] Shkarin proved the existence of

a bounded linear operator T satisfying the Kitai Criterion on each

separable infinite-dimensional Banach space. For more detailed in-

formation about cyclic, hypercyclic linear operators we refer to [1].

We stress that all investigations on dynamics of linear operators

were considered over the field of the real or complex numbers. On the

other hand, non-Archimedean functional analysis is well-established

discipline, which was developed in Monna’s series of works in 1943.

Last decades there have been published a lot of books devoted to

the non-Archimedean functional analysis (see for example [14, 19]).

In [12] a Non-Archimedean spectral theorem has been recently de-

veloped for normal operator linear operators on non-Archimedean

Banach spaces.
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In the present talk, we are going to discuss dynamics of linear

operators defined on topological vector space over non-Archimedean

valued fields. We will show that there does not exist any hypercyclic

operator on a finite dimensional space. Moreover, we give sufficient

and necessary conditions of hypercyclicity (supercyclicity) of linear

operators on separable F -spaces. We will show that a linear operator

T on topological vector space X is hypercyclic (supercyclic) if it

satisfies Hypercyclic (resp. Supercyclic) Criterion. Note that the

shift operators have many applications in many branches of modern

mathematics (in real setting).
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Kocubei in [13] has considered various functional models of the

unilateral shift operator. For the sake of completeness, let us provide

one an illustrative example.

Example 1.1. Let Zp be the unit ball in Qp. By C(Zp,Cp) we denote

the space of all continuous functions on Zp with values in Cp en-

dowed with ”sup”-norm. Consider a linear operator T : C(Zp,Cp)→
C(Zp,Cp) defined by

(Tf)(x) = f(x+ 1)− f(x), (x ∈ Zp), f ∈ C(Zp,Cp).

We note (see [11]) that the operator T can be interpreted as the an-

nihilation operators in a p-adic representation of the canonical com-

mutation relations of quantum mechanics.

It is well known [15] that the Mahler polynomials

Pn(x) =
x(x− 1) · · · (x− n+ 1)

n!
, n ∈ N; P0(x) = 1,

form an orthonormal basis in C(Zp,Cp). The operator T acts on the

Mahler polynomials as follows:

TPn = Pn−1, n ∈ N; TP0 = 0.

It is known that the spaces C(Zp,Cp) and c0(N) are isomorphic via

the isomorphism
∞∑
n=0

xnPn → (x0, x1, . . . , xn, . . . )

therefore, the operator T is transformed to the shift operator.
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We stress that the non-Archimedean shift operators have certain

applications in p-adic dynamical systems [8, 9]. These investigations

motivate us to consider weighted shifts (which are more general).

So, we study weighted backward shifts on c0(Z) and c0(N) spaces, re-

spectively, and characterize hypercyclicity and supercyclicity of such

kinds of operators. Our investigations will open further investigations

of non-Archimedean analogous of Volterra integration operators.
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2. definitions and preliminary results

All fields appearing in this paper are commutative. A valuation on

a field K is a map | · | : K→ [0,+∞) such that:

(i) |λ| = 0 if and only if λ = 0,

(ii) |λµ| = |λ| · |µ| (multiplicativity),

(iii) |λ+ µ| ≤ |λ|+ |µ| (triangle inequality), for all λ, µ ∈ K.

The pair (K, | · |) is called a valued field. We often write K instead of

(K, | · |).

Definition 2.1. Let K = (K, | · |) be a valued field. If | · | satisfies

the strong triangle inequality: (iii′) |λ + µ| ≤ max{|λ|, |µ|}, for all

λ, µ ∈ K, then | · | is called non-Archimedean, and K is called a

non-Archimedean valued field

Remark 2.1. In what follows, we always assume that a norm in non-

Archimedean valued field is nontrivial.
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From the strong triangle inequality we get the following useful

property of non-Archimedean value: If |λ| 6= |µ| then |λ ± µ| =

max{|λ|, |µ|}. We frequently use this property, and call it as the

non-Archimedean norm’s property. A non-Archimedean valued field

K is a metric space and it is called ultrametric space.

Let a ∈ K and r > 0. The set

B(a, r) := {x ∈ K : |x− a| ≤ r}

is called the closed ball with radius r about a. (Indeed, B(a, r) is

closed in the induced topology). Similarly,

B(a, r−) := {x ∈ K : |x− a| < r}

is called the open ball with radius r about a.
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We set |K| := {|λ| : λ ∈ K} and K× := K \ {0}, the multiplicative

group of K. Also, |K×| := {|λ| : λ ∈ K×} is a multiplicative group of

positive real numbers, the value group of K.

Lemma 2.2. (Lemma 1.4 [19]) Let K be a non-Archimedean valued

field. Then the value group of K either is dense or is discrete; in the

latter case there is a real number 0 < r < 1 such that |K×| = {rs :

s ∈ Z}.

Definition 2.3. A pair (E, ‖·‖) is called a K-normed space over K, if

E is a K-vector space and ‖ · ‖: E → [0,+∞) is a non-Archimedean

norm, i.e.

(i) ‖ x ‖= 0 if and only if x = 0,

(ii) ‖ λx ‖= |λ| ‖ x ‖,
(iii) ‖ x + y ‖≤ max{‖ x ‖, ‖ y ‖}, for all x,y ∈ E, λ ∈ K.

We frequently write E instead of (E, ‖ · ‖). Moreover, E is called

a K-Banach space or a Banach space over K if it is complete with

respect to the induced ultrametric d(x,y) =‖ x− y ‖.



9

Example 2.1. Let K be a non-Archimedean valued field; then

l∞ := all bounded sequences on K

with pointwise addition and scalar multiplication and the norm

‖ x ‖∞:= sup
n
|xn|

is a K-Banach space.

Remark 2.2. From now on we often drop the prefix ”K”- and write

vector space, normed space, Banach space instead of K-vector space,

K-normed space, K-Banach space, respectively.

In what follows, we need the following auxiliary fact.

Lemma 2.4. Let E be a normed space over a non-Archimedean val-

ued field K. Then for each pair of sequences (xn) and (yn) in E such

that ‖ xn ‖ · ‖ yn ‖→ 0 as n→∞ there exists a sequence (λn) ⊂ K×
such that

(2.1) λnxn → 0 and λ−1
n yn → 0, as n→∞.
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Let X and Y be topological vector spaces over non-Archimedean

valued field K. By L(X, Y ) we denote the set of all continuous linear

operators from X to Y . If X = Y then L(X, Y ) is denoted by

L(X). In what follows, we use the following terminology: T is a

linear continuous operator on X means that T ∈ L(X). The T -orbit

of a vector x ∈ X, for some operator T ∈ L(X), is the set

O(x, T ) := {T n(x);n ∈ Z+}.

An operator T ∈ L(X) is called hypercyclic if there exists some vector

x ∈ X such that its T -orbit is dense in X. The corresponding vector

x is called T -hypercyclic, and the set of all T -hypercyclic vectors is

denoted by HC(T ). Similarly, T is called supercyclic if there exists

a vector x ∈ X such that whose projective orbit

K ·O(x, T ) := {λT n(x);n ∈ Z+, λ ∈ K}

is dense in X. The set of all T -supercyclic vectors is denoted by

SC(T ). Finally, we recall that T is called cyclic if there exists x ∈ X
such that

K[T ]x := spanO(x, T ) = {P (T )x;P polynomial}

is dense in X. The set of all T -cyclic vectors is denoted by CC(T ).
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Remark 2.3. We stress that the notion of hypercyclicity makes sense

only if the space X is separable. Note that one has

HC(T ) ⊂ SC(T ) ⊂ CC(T ).

Remark 2.4. Note that if T is a hypercyclic operator on a Banach

space then ‖T‖ > 1.
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3. hypercyclicity and supercyclicity of linear

operators

In this section we find sufficient and necessary conditions to hy-

percyclicity of linear operators on F -spaces. In what follows, by

F -space we mean a topological vector space X which is metrizable

and complete over a non-Archimedean field.

Now we show that hypercyclicity turns out to be a purely infinite-

dimensional phenomenon.

Proposition 3.1. Let X 6= {0} be a finite-dimensional space. Then

each operator T ∈ L(X) is not hypercyclic.

Proof. Without loss of generality, we may assume that X = Km

for some m ≥ 1. Now we are going to prove that each operator

T ∈ L(Km) is not hypercyclic. Suppose that a linear operator T

on Km is hypercyclic. Take x ∈ HC(T ). The density of O(x, T ) in

Km implies that the family {x, T (x), . . . , Tm−1(x)} forms a linearly

independent system. Hence, this collection is a basis of Km. For

any α ∈ K \ {0}, one can find a sequence of integers (nk) such that

T nk(x)→ αx. Then T nk(T ix) = T i(T nkx)→ αT i(x) for each i < m.

Hence for any y ∈ Km we obtain T nk(y) → αy which yields that

det(T nk) → αm, i.e. det(T )nk → αm. Thus, putting a := det(T ), we

have the set {an;n ∈ N} is dense in K \ {0}, but it is impossible.

Indeed, it is clear that |an − z| > 1 for any z ∈ K \B(0, 1) if |a| ≤ 1

and |an − w| > 1 for any w ∈ B(0, 1) if |a| > 1. �
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Our first characterization of hypercyclicity is a direct application

of the Baire category theorem.

Theorem 3.2. (cp. [3]) (Transitivity theorem) Let X be a sep-

arable F -space and T ∈ L(X). The following statements are equiva-

lent:

(i) T is hypercyclic;

(ii) T is topologically transitive; that is, for each pair of non-

empty open sets (U, V ) ⊂ X there exists n ∈ N such that

T n(U) ∩ V 6= ∅.

Corollary 3.3. Let X be a separable F -space and T ∈ L(X). If T

is hypercyclic then HC(T ) is a dense Gδ-set.
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Definition 3.4. [2] Let X be a topological vector space, and let T ∈
L(X). It is said that T satisfies the Hypercyclicity Criterion if

there exist an increasing sequence of integers (nk), two dense sets

D1,D2 ⊂ X and a sequence of maps Snk : D2 → X such that:

(1) T nk(x)→ 0 for any x ∈ D1;

(2) Snk(y)→ 0 for any y ∈ D2;

(3) T nkSnk(y)→ y for any y ∈ D2.

Note that in the above definition the maps Snk are not assumed to

be continuous or linear. We will sometimes say that T satisfies the

Hypercyclicity Criterion with respect to the sequence (nk). When it

is possible to take nk = k and D1 = D2, it is usually said that T

satisfies Kitai’s Criterion [10].

Theorem 3.5. Let T ∈ L(X), where X is a separable F -space. As-

sume that T satisfies the Hypercyclicity Criterion. Then the operator

T is hypercyclic.
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Definition 3.6. Let T0 : X0 → X0 and T : X → X be two continuous

maps acting on topological spaces X0 and X. The map T is said to

be a quasi-factor of T0 if there exists a continuous map with dense

range J : X0 → X such that TJ = JT0. When this can be achieved

with a homeomorphism J : X0 → X, we say that T0 and T are

topological conjugate. Finally, when T0 ∈ L(X0) and T ∈ L(X)

and the factoring map (resp. the homeomorphism) J can be taken as

linear, we say that T is a linear quasi-factor of T0 (resp. that T0

and T are linearly conjugate).

The usefulness and importance of these definitions can be seen in

the following

Lemma 3.7. Let T0 ∈ L(X0) and T ∈ L(X). Assume that there

exists a continuous map with dense range J : X0 → X such that

TJ = JT0. Then the following statements are satisfied:

(1) Hypercyclicity of T0 implies hypercyclicity of T ;

(2) Let J be a homeomorphism and T0 satisfies Hypercyclicity Cri-

terion then T satisfies Hypercyclicity Criterion;

(3) Let J be a linear homeomorphism then T is hypercyclic iff T0

is hypercyclic.

Remark 3.1. Note that if T ∈ L(X) is hypercyclic and if J ∈ L(X)

has a dense range and JT = TJ then HC(T ) is invariant under J .
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We have already observed that if T is a hypercyclic operator on

some F -space X then HC(T ) is a dense Gδ-set in X. It shows that

the set HC(T ) is large in a topological sense. This implies largeness

in an algebraic sense.

Proposition 3.8. Let T ∈ L(X) be hypercyclic on the separable F -

space X. Then for every x ∈ X there exist y, z ∈ HC(T ) such that

x = y + z.

We say that a linear subspace E ⊂ X is a hypercyclic manifold for

T if E \ {0} consists entirely of hypercyclic vectors.

Theorem 3.9. [4, 7] Let X be a topological vector space, and T ∈
L(X) be hypercyclic. If x ∈ HC(T ), then K[T ]x is a hypercyclic

manifold for T . In particular, T admits a dense hypercyclic manifold.
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We now turn to the supercyclic analogues of Theorems 3.2 and 3.5.

Theorem 3.10. Let X be a separable F -space, and T ∈ L(X). The

following statements are equivalent:

(i) T is supercyclic;

(ii) For each pair of non-empty open sets (U, V ) ⊂ X there exist

n ∈ N and λ ∈ K such that λT n(U) ∩ V 6= ∅.

The proof is similar to the proof of Theorem 3.2.

Definition 3.11. [17] Let X be a topological vector space, and let

T ∈ L(X). We say that T satisfies the Supercyclic Criterion if

there exist an increasing sequence of integers (nk), two dense sets

D1,D2 ⊂ X and a sequence of maps Snk : D2 → X such that:

(1) ‖ T nk(x) ‖‖ Snk(y) ‖→ 0 for any x ∈ D1 and any y ∈ D2;

(2) T nkSnk(y)→ y for any y ∈ D2.

Theorem 3.12. Let T ∈ L(X), where X is a separable Banach

space. Assume that T satisfies the Supercyclic Criterion. Then T is

supercyclic.



18

Proposition 3.13. Let X be a separable F -space over non-Archimedean

valued field K and T ∈ L(X). Then the following statements hold:

(i) T is cyclic iff λT is cyclic for every λ ∈ K×;

(ii) T is supercyclic iff λT is supercyclic for every λ ∈ K×

Remark 3.2. We notice that hypercyclicity of T does not implies hy-

percyclicity of λT in general. Let us consideran operator αI+βB and

proved that the operator is hypercyclic iff and only if max{|α|, 1} <
|β|. One can see that if |λ| ≤ 1

|β| then λ(αI + βB) can not be hyper-

cyclic.
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4. Backward shifts on c0

In the present section, we are going to discuss the backward shifts

on c0. We notice that similar to results in the archimedean case have

been investigated in [6, 16, 17]. Here, as usual, c0 stands for the set

of all sequences which tend to zero equipped with a norm

‖ x ‖:= sup
n
{|xn|}, x ∈ c0.

It is clear that c0 is a Banach space. For convenience, we denote

c0(Z) := {(xn)n∈Z : xn ∈ K, |x±n| → 0 as n→ +∞}

and

c0(N) := {(xn)n∈N : xn ∈ K, |xn| → 0 as n→ +∞}
In what follows, we always assume that c0 is a separable space. Note

that the separability of c0 is equivalent to the separability of K. Let

K be a countable dense subset of K. Then the countable set

c00(Z) := {λ−ne−n+λ−n+1e−n+1+· · ·+λnen : λ±j ∈ K, 0 ≤ j ≤ n,∀n ∈ N}

is dense in c0(Z), where en is an unit vector such that only n-th

coordinate equals to 1 and others are zero.
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Let a = (an)n∈Z be a bounded sequence of non-zero numbers of

K. An operator Ba on c0(Z) defined by Ba(en) = anen−1 is called

bilateral weighted backward shift if ai 6= 1 for some i ∈ Z, otherwise

it is called bilateral unweighted backward shift and we denote it by

B. In general, the (unweighted) backward shift B is considered as a

weighted shift and is thus not excluded from the family of weighted

shifts. The operator B is an example of weighted shifts where each

weight is equal to 1.

Theorem 4.1. Let Ba be a bilateral weighted backward shift operator

on c0(Z). Then the following statements hold:

(i) Ba is hypercyclic if and only if, for any q ∈ N,

(4.1) lim inf
n→+∞

max

{
n+q∏
i=1

|a−1
i |,

n−q∏
j=1

|a−j+1|

}
= 0.

(ii) Ba is supercyclic if and only if, for any q ∈ N,

(4.2) lim inf
n→+∞

n+q∏
i=1

|a−1
i | ×

n−q∏
j=1

|a−j+1| = 0.
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From this theorem we immediately find the following facts.

Corollary 4.2. Let Ba be a bilateral weighted backward shift on

c0(Z). Then the following statements hold:

(i) if Ba is supercyclic then λBa is supercyclic for any λ ∈ K×;

(ii) if the weight sequence a = (an)n∈Z is symmetrical to the norm,

i.e. |an| = |a−n|, n = 1, 2, . . . then Ba is not supercyclic.

Corollary 4.3. Let B be the bilateral unweighted backward shift on

c0(Z). Then B is not supercyclic. Moreover, λB is not supercyclic

for any λ ∈ K.

Corollary 4.4. Let a and b be weighted sequences such that |an| >
|bn| for any n ∈ Z. Then Ba+b is hypercyclic (resp. supercyclic) if

and only if Ba is hypercyclic (resp. supercyclic).

Remark 4.1. We first notice that Theorem 4.1 remains the same in

the real setting, but the valuation should be replaced with the usual

absolute value. However, in the real case, Corollary 4.4 is not true.

Indeed, for the weights a and b defined by

an =

{
n, if n ≥ 1,

− 1
n−1 , if n < 1.

bn =

{
−n+ 1

n+1 , if n ≥ 1,
1

n−1 −
1

n−2 , if n < 1.

the operators Ba and Bb are hypercyclic. But, the weight a + b

does not satisfy (4.1). Consequently, according to Theorem 4.1 the

operator Ba+b can not be hypercyclic.



22

Due to Remark 2.3 from the last theorem we can formulate the

following fact.

Theorem 4.5. Let a = (bn)n∈N ∈ `∞ such that bn 6= 0 for all n ≥ 1.

Then weighted backward shift Ba on c0(N) is cyclic. In particular,

the backward shift operator B on c0(N) is cyclic.

Corollary 4.6. Let B be the backward shift on c0(N). Then the λB

is cyclic for any λ ∈ K×
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Now let us consider a unilateral weighted backward shifts on c0(N).

Recall that the operator defined asBa(e1) = 0 andBa(en) = an−1en−1

if n ≥ 2, is called unilateral weighted backward shift. Here a =

(an)n∈N be a bounded sequence of non-zero numbers of K. The op-

erator Ba is called unilateral unweighted backward shift if an = 1 for

all n ≥ 1. We denote by B a unilateral unweighted backward shift

operator.

Theorem 4.7. Any unilateral weighted backward shift Ba on c0(N)

is supercyclic. Moreover, Ba is hypercyclic iff

(4.3) lim sup
n→∞

n∏
i=1

|ai| =∞.

Corollary 4.8. Let B be an unilateral unweighted backward shift on

c0(N). Then the following assertions hold:

(i) The operator λB is supercyclic for any λ ∈ K×;

(ii) λB is hypercyclic iff |λ| > 1.
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5. λI + µB operators on c0

In this section, we are going to consider the following operator

Tλ,µ = λI + µB,

where I is a identity and B is the unweighted backward shift.

Theorem 5.1. The operator Tλ,µ on c0(Z) is not supercyclic for all

λ, µ ∈ K.

From Remark 2.3 we obtain the following

Corollary 5.2. The operator Tλ,µ on c0(Z) is not hypercyclic for all

λ, µ ∈ K.
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Now we consider the operator Tλ,µ on c0(N). We will show that

hypercyclicity of Tλ,µ is equivalent to the Hypercyclicity Criterion.

Theorem 5.3. For the the operator Tλ,µ acting on c0(N) the following

statements are equivalent:

(i) Tλ,µ satisfies Hypercyclicity Criterion;

(ii) Tλ,µ is hypercyclic;

(iii) |λ| < |µ| and |µ| > 1.

To prove the theorem we first prove three auxiliary lemmas.

Lemma 5.4. If the operator Tλ,µ acting on c0(N) is hypercyclic then

|µ| > |λ| and |µ| > 1.

Lemma 5.5. Let |µ| > 1. If |λ| < 1, then Tλ,µ acting on c0(N) is

hypercyclic.

Proposition 5.6. If 1 ≤ |λ| < |µ| then
⋃∞
n≥1 T

−n
λ,µ(0) is a dense set

in c0(N).

Lemma 5.7. Let 1 ≤ |λ| < |µ|. Then the operator Tλ,µ satisfies the

Hypercyclicity Criterion.
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Remark 5.1. According to Theorem 5.3 an operator I +µB on c0(N)

can not be hypercyclic for any µ ∈ K. But, in real case [18], it is

hypercyclic for µ 6= 0.

Now we will study supercyclicity of Tλ,µ. Similarly to the hyper-

cyclic case we have the following

Theorem 5.8. For the operator Tλ,µ acting on c0(N) the following

statements are equivalent:

(i) Tλ,µ satisfies Supercyclicity Criterion;

(ii) Tλ,µ is supercyclic;

(iii) |λ| < |µ|.

Remark 5.2. We stress that all operators on c0 considered above are

hypercyclic (resp. supercyclic) if they satisfy Hypercyclic (reps. Su-

percyclic) Criterion. It is natural to ask: does there exist a hyper-

cyclic (resp. supercyclic) linear operator on c0 which does not satisfy

HC (SC)? We conjecture that such kind of linear operators on c0 do

not exist.
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6. I +Bb operator on c0(N)

Now let us consider weighted backward shifts on c0(N). Recall that

an operator defined as Bb(e1) = 0 and Bb(en) = bn−1en−1 if n ≥ 2,

is called weighted backward shift. Here b = (bn)n∈N is taken to be a

bounded sequence on K. The operator Bb is called backward shift if

bn = 1 for all n ≥ 1 such shift is denoted by B.

Theorem 6.1. Let b = (bn)n∈N ∈ `∞ such that bn 6= 0 for all n ≥ 1.

Then the following statements hold true:

(i) the weighted backward shift Bb on c0(N) is supercyclic. In par-

ticular, the backward shift operator B on c0(N) is supercyclic.

(ii) the weighted backward shift Bb on c0(N) is hypercyclic iff

(6.1) lim sup
n→∞

n∏
j=1

|bj| =∞.
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Theorem 6.2. Let b ∈ `∞(N) with b1 = 0. Then Tb is supercyclic iff

Tb′ is hypercyclic, where b′ = B(b), here as before, B is the backward

shift.

To establish this result we have used the following facts.

Lemma 6.3. Let b ∈ `∞(N) and Tb be a cyclic operator. Then

card({n ∈ N : bn = 0}) ≤ 1.

Here card(·) stands for a cardinality of a set.

Lemma 6.4. Let b ∈ `∞(N) and Tb be a supercyclic operator. Then

bk 6= 0, ∀k ≥ 2.

Lemma 6.5. Let b ∈ `∞(N) and Tb be a hypercyclic operator. Then

bk 6= 0, ∀k ≥ 1.
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Now, we are going to provide an example of a supercyclic operator

Tb which satisfies all conditions of Theorem 6.2.

Example 6.1. Let b ∈ `∞(N) with b1 = 0 and bk = µ, for all k ≥ 1,

where |µ| > 1. Then for b′ = B(b) we have Tb′ = I + µB. We know

that I+µB is hypercyclic if and only if |µ| > 1. So, Tb′ is hypercyclic.

Then, due to Theorem 6.2 the operator Tb is supercyclic.

Remark 6.1. For given b ∈ `∞(N) with card({n ∈ N : bn = 0}) ≥ 1

Lemma 6.3 and Lemma 6.4 show a difference between supercyclicity

and cyclicity of Tb. In order to be sure that we need to give an

example for the existence of cyclic operator Tb with bk = 0 where

k 6= 1.

Proposition 6.6. Let K = Qp and b ∈ `∞(N) with b2 = 0 and

bk 6= 0 for all k 6= 2. If Tb′′ is hypercyclic then Tb is cyclic, where

b′′ = B2(b).
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Now, we find sufficiency conditions of the hypercyclicity of Tb.

Theorem 6.7. Let b ∈ `∞(N). If

(6.2) lim
n→∞

n∏
j=1

|bj| =∞,

then the operator Tb on c0(N) is hypercyclic.

According to Remark 2.3, as a corollary of Theorems 6.2 and 6.7

we can formulate the following result.

Theorem 6.8. Let b ∈ `∞(N). If

(6.3) lim
n→∞

n∏
j=2

|bj| =∞,

then the operator Tb on c0(N) is supercyclic.

Using Proposition 3.13 and Theorem 6.8, we have the next corol-

lary.

Corollary 6.9. Let b ∈ `∞(N) and λ ∈ K×. Then λI + Bb is

supercyclic on c0(N) if

lim
n→∞

n∏
j=2

∣∣∣∣bjλ
∣∣∣∣ =∞.
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Now we give a necessity condition for the supercyclicity of Tb.

Theorem 6.10. Let b ∈ `∞(N). If the operator Tb on c0(N) is

supercyclic, then

(6.4) lim sup
n→∞

n∏
j=2

|bj| =∞.

Corollary 6.11. Let b ∈ `∞(N). If Tb is a supercyclic operator then

‖b‖ > 1.

Remark 6.2. Thanks to Theorem 6.10 we can say that if (6.4) does

not hold then Tb can not be supercyclic. A natural question arises:

can (6.4) in Theorem 6.10 be replaced with

(6.5) lim sup
n→∞

n∏
j=1

|bj| =∞.

In fact, due to Theorem 6.2 it is possible that Tb is supercyclic

when b1 = 0. So, in this case, we can not say that (6.5) would be

necessary for the supercyclicity of Tb. By the way, if b1 6= 0 one can

replace (6.4) with (6.5) in Theorem 6.10.
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As a corollary of Lemma 6.5 and Theorem 6.10 we can formulate

the following result.

Theorem 6.12. Let b ∈ `∞(N). If the operator Tb on c0(N) is

hypercyclic then

(6.6) lim sup
n→∞

n∏
j=1

|bj| =∞.

This result together with Theorem 6.1 (ii) yields that the hyper-

cyclicity of Tb implies the hypercyclicity of Bb on c0(N). On the

other hand, Bb is always supercyclic (see Theorem 6.1(i)), while Tb
is supercyclic under some conditions.
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7. Conclusions

In the previous sections, we found necessity conditions of the cyclic-

ity, supercyclicity and hypercyclicity of I + Bb. Moreover, we also

gave sufficiency conditions to cyclicity, supercyclicity and hyper-

cyclicity of that operator. Unfortunately, we were not able to show

that our sufficiency condition would be necessary for the cyclicity

(resp. supercyclicity and hypercyclicity). However, in the case that

(bn)n∈N is a stationary sequence, we can get the following result.

Theorem 7.1. Let (bn)n∈N be a sequence of non-zero numbers. As-

sume that there exists an integer n0 ≥ 1 such that bn = µ for all

n ≥ n0. Then the following statements are equivalent:

A. Tb is hypercyclic;

B. Tb satisfies Hypercyclic Criterion;

C. |µ| > 1;

D. Tb is supercyclic;

E. Tb satisfies Supercyclic Criterion;

F. Tb is cyclic.
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We would like to stress that the following problems remains open

for Tb.

Problem 7.2. Does there exist b ∈ `∞(N) such that Tb is hypercyclic

under condition

lim inf
n→∞

n∏
j=1

|bj| <∞.

Problem 7.3. Does there exist a supercyclic operator Tb if

lim inf
n→∞

n∏
j=2

|bj| <∞.

Problem 7.4. Does there exist b ∈ `∞(N) such that Tb is hypercyclic

and T 2
b is not cyclic?
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