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How quantum ultrametricity differs from quantum real?

My talk will be devoted to the investigation of the effective potentials in the
quantum field theories (with quartic interaction) on the unramified extension of

p-adic field.

Effective potential is the best way to visualize how quantum effects deforms the
classical action and it really looks like at quantum level.

Field theories on ultrametric spaces are important and unusual, so it is very
natural to take a look ‘how they looks like’. How quantum ultrametricity differs
from the ordinary? How quantum real are related to quantum ultrametric?



Effective potential-1
Z(¢,0,9) = 2L + J(z)p(x)

Define a functional W(J) in terms of the probability amplitude for the
vacuum state in the far past to go into the vacuum state in the far future in
the presence of the external sources
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Effective potential-2
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It is the generating functional for the connected Green’s functions;



Effective potential-3
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Effective potential-4
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The sum of the IPI (one-particle-irreducible) Green'’s
functions. They are defined as the sum of all connected
Feynman diagrams which cannot be disconnected by
cutting a single internal line; these are evaluated without
propagators on the external lines



Effective potential-5
1
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The first term, V, is called the effective potential. It is equal to the sum
of all Feynman diagrams with only external scalar lines and with
vanishing external momenta.



Effective potential-6
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Effective potential-massless




Effective potential-massless-2

euclidean!
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Effective potential-QM

If n = 1, the integral converges as A — 0o, and
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Expanding for large cut-off we get the
Coleman-Weinberg potential
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Coleman, Weinberg 1973
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Symmetry breaking
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Quantum fields on unramified extension

Aref'eva, Dragovich, Frampton, Freund, Khrennikov, Kozyrev, Lerner, Missarov,
Okada, Parisi, Smirnov, Vladimirov, Volovich, Witten, Zelenov, Zuniga-Galindo....
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Gubser, Trundy, Jepsen, Parikh-unramified



Why unramified extensions?(before formalities)

from 1605.01061
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In order to describe higher-dimensional structures in p-adic mathematical physics, one
has to construct a non-Archimedean analogue of R" space. A direct way to do that
would be to simply take an external product Q) of n copies of p-adic field and equip
it with a structure of vector space. In many cases this would be sufficient. However,
bearing in mind possible applications to the AdS/CFT correspondence, it is desirable
to have a space that admits a natural holographic interpretation. Q7 is not a field per
se, and thus does not possess a structure of the Bruhat-Tits tree which would play a
role of dual bulk geometry.



This issue can be resolved by using instead of Q) unramified extension of the p-adic
number field Q,» of degree [Q,» : Q,] = n. As a vector space, Q,» is isomorphic to
Q. To be an unramified extension, it must obey the following requirement. If L and
K are two fields, and L is an extension of K, we can consider quotients of these fields
by their maximal ideals ¢ = L/mp, k = K/myg. Then k is a field extension of ¢, and
if its’ degree is equal to the degree of L, so that [¢ : k| = [L : K|, L is an unramified
extension. Explicitly, Q,» can be obtained from Q, by adjoining a primitive (p" — 1)-st
root of unity [37].



We also need to equip @Q,» with a norm that satisfies the requirement of ultra-
metricity and becomes the standard p-adic norm for n = 1. It is also handy to assume
that the norm takes values in integer powers of p, since it induces a branching structure
that can serve as a skeleton of the Bruhat-Tits tree. The natural choice is:

2] = N (@)],/", (A1)

where N (x) is a determinant of a linear map induced by multiplication in Q,»: f(a) =
ra, a € Q,n, that can be seen as a linear operator acting on Q7.



The same story for ultrametric
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The same story for ultrametric
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where @ = A¢7 /2. One can think of number M as

of a logarithm of the corresponding ultraviolet
momentum scale |k, = A = p¥.



After summation...

After careful (but rather technical and cumbersome)
estimation of different part of this divergent series we
get for n=4




In‘regr'al formula
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That would be possible if the Euler-Maclaurin formula for infinitely differentiable func-
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tions was valid:
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and the residual term was small enough.



Integral approximation gives the same answer
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What about ‘quantum mechanical’ example of Qp
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rersus the result of series summation (2.16) :
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There 1s a clear discrepancy between these two
expressions for large values of p since:

On the other hand, for small p the Euler-Maclaurin
estimate has surprisingly good accuracy. For
example, forp = 7 :

N(7) ~ 1.387

n(1-771) N
) ~1.384




There is a clear discrepancy between these two expressions for large values of p since:
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On the other hand, for small p the Euler-Maclaurin estimate has surprisingly good
accuracy. For example, for p = 7:
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p — 1 limit
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Future directions

-mixed fields
-product vs unramified

-p-adic Liouville theory



Thank you for your attention






