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INTRODUCTION

In arXiv:2006.05559, Non-Archimedean Statistical Field Theory
We construct (in a rigorous mathematical way) interacting quantum field
theories over a p-adic spacetime in an arbitrary dimension.

We provide a large family of energy functionals E(¢, J) admitting natural
discretizations in finite-dimensional vector spaces such that the partition
function

z%(J) = [ D(g)e Ko E@) 1)

can be defined rigorously as the limit of the mentioned discretizations.
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INTRODUCTION

o Key fact: Dg = limDf = U2, Dy, Dy — D' Here Dy is
finite-dimensional real vector space. Given a test function ¢ € Dg,
there is / such that ¢ € Df, and thus ¢ has a natural discretization.
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INTRODUCTION

Key fact: DR = Ii_m>D]’R = U® Dk, D — D]’Ifl Here Dy is
finite-dimensional real vector space. Given a test function ¢ € Dg,
there is / such that ¢ € Df, and thus ¢ has a natural discretization.

The key fact is not true for the real Schwartz space!

Discrete means that J e DL, and
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In this case there is a cut-off, the support of the functions in D]R is
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Continuous means J € Dy, and ZP"s(J fD Ye ~xgTEl9)

Zifiga-Galindo ( ) May 21,2021 3 /55



INTRODUCTION

Key fact: DR = H_)mD]’R = U® Dk, D — D]’Ifl Here Dy is
finite-dimensional real vector space. Given a test function ¢ € Dg,
there is / such that ¢ € Df, and thus ¢ has a natural discretization.

The key fact is not true for the real Schwartz space!

Discrete means that J e DL, and
phys fD’ e KBT ((P J)

In this case there is a cut-off, the support of the functions in D]R is
the ball with center at the origin and radius p'.

: hys _ —x=1E(9.J)
Continuous means J € Dg, and ZP"*(J) = [, D(¢p)e "7

@ In this case there is no cut-off but the fields still have a natural

discretizacion.
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INTRODUCTION

@ The goal of the work is to understand the limit:
fD],R D(q))e_ﬁE((P’J) = Ipg D((p)e_ﬁE((P’J) as | — oo.
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INTRODUCTION
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@ Our main result is the construction of a measure on a function space
such that ZP"Ys(J) makes mathematical sense, and the calculations
of the n-point correlation functions can be carried out using
perturbation expansions via functional derivatives, in a rigorous
mathematical way.
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INTRODUCTION

@ The goal of the work is to understand the limit:
fD],R D(q))e_ﬁE((P’J) = Ipg D((p)e_ﬁE((P’J) as | — oo.

@ Our main result is the construction of a measure on a function space
such that ZP"Ys(J) makes mathematical sense, and the calculations
of the n-point correlation functions can be carried out using
perturbation expansions via functional derivatives, in a rigorous
mathematical way.

@ Our results include ¢*-theories. In this case, E(¢, J) can be
interpreted as a Landau-Ginzburg functional of a continuous Ising
model (i.e. ¢ € R) with external magnetic field J.

o If J=0, then E(¢,0) is invariant under ¢ — —¢. We show that the
systems attached to discrete versions of E (¢, 0) have spontaneous
breaking symmetry when the temperature T is less than the critical

~Yaata¥a =)
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INTRODUCTION

E(p.J) =7 quv( YW (9.9) ¢ (x X—fJ )g(x)d

+ 2 r 2 dVx 4+ 2 [ gt <x>de,
2 QN ZQN
p P

W (9,0) ¢ (x) = F 2, (Aws (llx||) F—x@) is pseudodifferential operator,
whose symbol has a singularity at the origin.

The operator [ ¢ (x) W (9,8) ¢ (x) dVx is non local. Then E(¢,J) is a
Qy
non local action.

Zifiga-Galindo () May 21,2021 5/ 55



INTRODUCTION

An important example of a W (9, &) operator is the Taibleson-Vladimirov
operator, which is defined as

1—pP -
DP¢ (x) = 1_ppﬁ N/cP HyHﬁ+N ¢ (x) _fKHX(||K||ﬁFHK¢),

where B> 0and ¢ € D (QQ’).
If N = B =1, the energy functional

=C ff {\x—yq)(y)} dxdy

QpxQp |p
appears in p-adic string theory.

Spokoiny, Boris L.: Quantum geometry of non-Archimedean particles and
strings. Phys. Lett. B 208(3-4), 401-406 (1988).

All the results presented in the article are valid if Q,, is replaced by any
non-Archimedean local field.
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Discretization of Energy Functionals
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The W operators

Take R; :={x € R;x > 0}, and fix a function w; : QQ’ — Ry
satisfying: (i) ws (y) is a radial i.e. ws(y) = w;(|lyl|,); (i) there exist
constants Cy, C; > 0 and 6 > N such that

) )
Gllylly < ws(llyll,) < Gllylly. for y € Q).

We now define the operator

p(x—y)—9(x) n N
W0 (x / Ty . for p e D (QY).

The operator Wy is pseudodlfFerentlaI, more precisely, if

A (1) 1= /:L_XP(y'K)dNy,

| s (v l)
Qp

then
W (x) = —Ft [Aw, (5) Forp] = —W (3,6) 9 (x), for p € D (Q}).
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Discretization of Energy Functionals

@ A discretization is obtained by considering truncations of p-adic
numbers of the form
a,/p*’ + a,/Hp*’+1 +...4+a+...+ a/,lplfl, for some [ > 1, i.e.
elements from G, := p~'Z)) /p'Z].
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Discretization of Energy Functionals

@ A discretization is obtained by considering truncations of p-adic
numbers of the form
a,/p*’ + a,/Hp*’+1 +...4+a+...+ a/,lplfl, for some [ > 1, i.e.
elements from G, := p~'Z)) /p'Z].

o We denote by D (Q))) := Dy the R-vector space of all test
functions of the form ¢ (x) = ¥ ¢ (i) Q (p' Ix — in), (i) € R,
i€G,
where i runs through a fixed system of representatives of G;, and
Q (p’ Ix — in) is the characteristic function of the ball i + p/Z)).

@ Notice that ¢ is supported on p_’Z;,V and that DI’R is a finite
dimensional vector space spanned by the

. I - . . I .
baS|s{Q (p || x |||p) }ieG/ . We identify ¢ € Dy with the column

vector [¢ (i)]icc,-
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Discretization of Energy Functionals

e If mis positive integer then ¢ (x) =

{iez@goa)o(p' ||x—i||,,)} = = 9" M0 (p'x~il,).

/
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Discretization of Energy Functionals

e If mis positive integer then ¢ (x) =

{-ez,q)() (p/ ||X—i||p)} :iGZé P (i)Q(pIHX—in)_

/

@ The functional E],(¢) := f @™ (x) d"x for me N\ {0}, ¢ € Dg,

discretizes as E (¢) = IN Y o™ (i).
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Discretization of Energy Functionals

e If mis positive integer then ¢ (x) =

{z 9 ()0 (p'nx—inp)} = 2 om0 (o x—ill,).

i€G /

@ The functional E],(¢) := f @™ (x) d"x for me N\ {0}, ¢ € Dg,

discretizes as E (¢) = IN Y o™ (i).

ic€G

o B(9):=2 [f 7{"’((|)|X y<”)§ d"xd"y + % [ ¢? (x)d"x > 0.
Qi xQy QY
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Discretization of Energy Functionals

e If mis positive integer then ¢ (x) =

{-ez,q)() (p/ ||X—i||p)} :iGZé P (i)Q(pIHX—in)_

/

@ The functional E],(¢) := f @™ (x) d"x for me N\ {0}, ¢ € Dg,

discretizes as E (¢) = IN Y o™ (i).

ic€G

o B(9):=2 [f 7{"’((|)|X y<”)§ d"xd"y + % [ ¢? (x)d"x > 0.
Qi xQy QY

e The restriction of Ey to Di (denoted as EO(I)) provides a natural
discretization of Ey.
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Discretization of Energy Functionals

We set U (/) := U = [U;;(/)];jc, where
Ui,j(/) = (%d (/, W(g) + %) 5i,j — gAi,j(/)r
" iy A

— Ay ) el
dlw)i= [ T A ()=

Qe 0 if i=j.

Lemma

With the above notation the following formula holds true:

E (@) = [0 ()il P ™U(1) [¢ (Dicq, = L p M Ui(Ne ()9 ) > 0.

ijeG

for ¢ € D, where U is a symmetric, positive definite matrix.
Consequently p~"NU(I) is a diagonalizable and invertible matrix.
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Lizorkin spaces of second kind

The p-adic Lizorkin space of second kind,
=L(Qy) =19 €D(Q): [ 9(x)d"x=0
Q
Lg := Lr(Q)) = L(QY) N Dr(QY), the real version.

FLi=FLQY) = {peD@QY)§(0) =0},

The Fourier transform gives rise to an isomorphism of C-vector spaces
from L into FL.

The topological dual £’ := [/(QQ’) of the space L is called the p-adic
Lizorkin space of distributions of second kind. The real version is denoted

as L] := L (QY).
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Lizorkin spaces of second kind

The discrete p-adic Lizorkin space of second kind:

ch= Q)
= {qo(x) = ZG ¢ (i) (p’ IIX—iII,,) (i) € C:p*’N_ZG) ¢ (i) = 0} :

I € N\ {0}. The real version Ly, := L(Q)) = L' N D.

FLh=7rc'QY) =

{a)(x): om0 (s lk-il,) .90 ec:¢<o>=o}.

i€G,

The Fourier transform F : £/ — F L' is an automorphism of C-vector
spaces.
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Energy functionals in the momenta space

Q

P ()W (3,6) 9 (x) d"x+ 2 [ ¢* (x) d"x
QY QY

_ Y A2\ |~ 2 N
=4 (ZAuslKll,) + 5 ) 9 () d.

Eo(g) =2 | 9 () (-W5)@(x)d"x+ 2 [ 97 (x)d"x
Qy
T
2

For ¢ € Df, we have

Bp)=p™ ¥ (FAil,) + )18 6)P

jeG~{0} ‘2
~ 2 Y %) N
+17(0) {£ (3Anllizl,) + 5 ) d }

where ¢ (j) = ¢, (i) +vV~19, (i) € C.

May 21, 2021
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Energy functionals in the momenta space

We use the alternative notation ¢; (j) = Re (¢ (j)), ¢, (i
Notice that

I

—

3
)
9

and that the condition ¢ () = @ (—x) implies that ¢, (—i) = @, (i) and
@, (—i) = —9, (i) for any i € G;. This implies that F Ly is R-vector
space of dimension #G; —1.

() _n—IN Y . K2\ 2 ,.
E =2p ) ) A (J1,) + =) e, (1) -
() L (GAi + )70

Zifiga-Galindo ()
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Energy functionals in the momenta space

We now define the diagonal matrix B(r) = [B(r) ,r=1, 2, where

i ]i,jec,+
o [ FAwlill) + i =]
B.. =

ij

0 if i+#j.

Notice that Bi(,jl) = Bi(’jz).
We set

BM 0
B(I):=B(1,8,v,a0) = [ 0 B ]

The matrix B = [B;j] is a diagonal of size 2 (#G;") x 2 (#G;"). In
addition, the indices i, j run through two disjoint copies of G,+.
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Energy functionals in the momenta space

Lemma

Assume that oy > 0. With the above notation the following formula holds
true:

EV (@)= E" (#56). 9, ()i G)

(B @eer 17, - 20
— [ [@ (j)]jecl+ ] 2p /NB(/) [@ (j)]jeG,+ >0,

for p € Ly ~ FLRk ~R#E =1 where 2p~NB(1) is a diagonal, positive
definite, invertible matrix.

v
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Gaussian measures
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Gaussian measures

Z = Z(5, 7, a2) = / D(g)eE®),
FLr(QY)

We set

20 = 206 v ap) = / Dy () e Eol9)

FLR(Q})
T
=7 / - (“mmec ] 25 M) {zﬁjﬂg])
R 1

P2 (J)]JGG+

X H do, (i) do, (i),

|€GJr

where N is a normalization constant, and [Tic+ d9; (i) do, (i) is the

Lebesgue measure of R(P"-1).
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Gaussian measures

Z() is a Gaussian integral, then

We set
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Gaussian measures

We define the following family of Gaussian measures:

[60: (j)]jeG,+
i ( % icor D

VPN I 7 0)) P N I 3 )
= Njexp( [ % <j)]j€G+ ] 2p~ " B(1) [ 7 (i LeG—i—, ])

X Hd(l’l (i) do, (i)

I€G+

in FLR =~ R(P™ 1) for 1 € N~ {0}.
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Gaussian measures

Thus for any Borel subset A of R(P"-1) ~
bounded function f : FLk — R the integral

(o1 (J)]je(;l+ [p1 (J)LeG
f f <[ [#, (J)]jec,+ ) aw < 9, <J>]JEG‘* ]) f @

is well-defined.

FLL and any continuous and

Zifiga-Galindo ()
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Gaussian measures

Lemma

There exists a probability measure space (X, F,P) and random variables

7 e
[ % Olecs ] forf € NS 10,

@ Whecr | 7,
[92 (j)]jeG/Jr

space (X, F,IP) is unique up to isomorphisms of probability measure
spaces. Furthermore, for any bounded continuous function f supported in
FLR, we have

such that P is the joint probability distribution of [

J f(@)dP(p)= [ f(9)dP(9).

FLy FLy
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Gaussian measures

For 6 > N, v, ap > 0, we define the operator
D(Q)) — 12(Q))

¢ — (IW@,0)+%) g,

. a1 R o T (N L
where (FW (2,6) + %) "¢ (x) : fw<zAW5(|K||,,>+“§)‘
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Gaussian measures

We define the distribution

G(x):= G(x;0,v,a2) = F L, (gAW‘< 1 ) eD (QQ’) .

xll,) + %

By using the fact that 51— is radial and (F(F¢))(x) = ¢(—x)
FAws (Il )+%
one verifies that

G(x) € Df (QQ’).

Zifiga-Galindo ()
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Gaussian measures

B:Dx (QY) x Dk (QF) — R

) —1
(9.6) = (p.(GW@.0)+%)"0),
where (-, -) denotes the scalar product in L% (QV).

Lemma

B is a positive, continuous bilinear form from Dg (QN) x Dr (Q)) into

|w

Lemma
For ¢ € Ll ~ fEIIR,

7 ());ecr ]sz—’NB—l " [ @ ());eer ] |

Bi(¢.¢) := Blg. ) = [ @ ())icee
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Gaussian measures

The collection {By; Y finite dimensional subspace of LR} is completely
determined by the collection {B;; | € IN \. {0}}. In the sense that given
any By there is an integer | and a subset J C G, the case J =@ is
included, such that ]By = B, |{¢1(j)=0,¢2(j)=0;j¢J}'
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Gaussian measures in the non-Archimedean framework

The spaces

£x (Q)) = k() — £x (2F)
form a Gel'fand triple, that is, Lr (QQ’) is a nuclear space which is densely
and continuously embedded in L% and ||g||5 = (g. ) for g € Lr (QY).

The mapping

defines a characteristic functional, i.e. C is continuous, positive definite
and C (0) = 1.
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Gaussian measures in the non-Archimedean framework

By the Bochner-Minlos theorem, there exists a probability measure
P :=1TP (4,7, a2) called the canonical Gaussian measure on
([,]’R (QQ’) ,B), given by its characteristic functional as

[ e/TIWOaP(W) = BN, ferr (QF). ()
£k (QF)
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Gaussian measures in the non-Archimedean framework

The measure IP is uniquely determined by the family of Gaussian measures

{]P Y C LR, finite dimensional space}

et
A

N\::

where
P

if ) has dimension n

Equivalently, P is uniquely determined by the family of bilinear forms
{B,;Y C Lg, finite dimensional space} ,

where IB., denotes the restriction of the scalar product to B to Y

y
Equivalently, IP is uniquely determined by the family of bilinear forms
May 21, 2021

{]B/; I € N~ {O}}
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Gaussian measures in the non-Archimedean framework

Theorem

Assume that 6 > N, v > 0, ap > 0. (i) The cylinder probability measure
P =1 (0,7, a2) is uniquely determined by the sequence

Py =1P;(d,7,a2), | € N~ {0}, of Gaussian measures. (ii) Let
f:FLR (QQ’ ) — IR be a continuous and bounded function. Then

lim [ F@dP(§) = [ F(§)dP().
Feh(ay) #in(Q))

The sequence of discretizations EO(/) determines a probability
measure P in L, (QV).
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Partition functions and generating functionals

Zifiga-Galindo ( ) May 21, 2021 32/ 55



Partition functions

@ We consider interactions of the form:
P(X) = a3 X3+ ag X + ... + anX?P € R[X], with D > 2,
satisfying P(a) > 0 for any « € R.  Which implies that
exp (=% [P(p)d"x) < 1.
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@ Each of these theories corresponds to a thermally fluctuating field
which is defined by means of a functional integral representation of
the partition function.
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Partition functions

@ We consider interactions of the form:
P(X) = a3 X3+ ag X + ... + anX?P € R[X], with D > 2,
satisfying P(a) > 0 for any « € R.  Which implies that
exp (=% [P(p)d"x) < 1.

@ Each of these theories corresponds to a thermally fluctuating field
which is defined by means of a functional integral representation of
the partition function.

@ All the thermodynamic quantities and correlation functions of the
system can be obtained by functional differentiation from a
generating functional as in the classical case.
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Partition functions

We assume that ¢ € Lg (Q})) represents a field that performs thermal
fluctuations. We also assume that in the normal phase the expectation
value of the field ¢ is zero. Then the fluctuations take place around zero.

The size of these fluctuations is controlled by the energy functional:

E(p) := Eo(9) + Ent(9),

where

Enlg) =" [ Plo(x)d"x a0,
QN

corresponds to the interaction energy.
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Partition functions

Definition
Assume that 6 > N, and 7, ap > 0. The free-partition function is defined
as

Zo :Zo(é, e ag) = / dlP ((P)
Lx(Q})

The discrete free-partition function is defined as

2 =2 (6, 7.00) = / dP; (¢)

for | € N~ {0}.

limSe Z(I) = Z5. Notice that the term e E0(9) is used to construct the
0
measure P (¢).
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Partition functions

Definition

Assume that § > N, and 7, as, a4 > 0. The partition function is defined
as

Z=2(8,v,a204) = / e En(@dP (¢) .
r(Q})

The discrete partition functions are defined as
Z0 = 208 v, a0, 04) = / e En(@)gP, (¢,
L (Q})

for | € N\ {0}.

Zifiga-Galindo ()
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Partition functions

From a mathematical perspective a P (¢)-theory is given by a cylinder
probability measure of the form

Loy (9) e En@dP - 1p, () e En(@)dP (3)
zZ
/ |nt( )d]]_)
CR(QSV)

in the space of fields L (QQ’). It is important to mention that we do not

require the Wick regularization operation in e~5n(¢) because we are
restricting the fields to be test functions
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Partition functions

The m-point correlation functions of a field ¢ € Lr (Qll,\’) are defined as

G(m (x1,..., Xm ) :% / (Hgo (xi) ) Em (@) 4P

ca(oy) N

The discrete m-point correlation functions of a field ¢ € E]’R (QQ’) are
defined as

m 1 m
G/( )(Xl """ Xm) = z( / <H(P<Xi)) En(9) gPp),

for I € N\ {0}.
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Generating functionals

We now introduce a current J(x) € Lg (Q)) and add to the energy
functional E(¢) a linear interaction energy of this current with the field
¢ (%), "

Esource @, J = f (P

in this way we get a new energy functional

E((p, J) = E(qo) + Esource((Pv J)

Notice that Esource (¢, J) = — (@, J), where (-, -) denotes the scalar
product of L2(Q}).
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Generating functionals

Assume that 6 > N, and 7, ap, a4 > 0. The partition function
corresponding to the energy functional E(¢, J) is defined as

Z(4;8,7, a2,04) := Z(J) = 1z / e En(o)Hed) gp,

Zo
Lr(Q})
and the discrete versions
Z0(18,.00,0) = 20() = = e Enl9)t9) gp,.
ZO ! N
Lz (QY)

for | € N~ {0}.
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Generating functionals

Definition
For 6 € Lg (Q)), the functional derivative Dy Z(J) of Z(J) is defined as

DyZ(J) = lim

e—0 €

Z(J+e€b)— Z(J) _ [ d
de

ZZU+ ee)L_o

Zifiga-Galindo () May 21, 2021 41/ 55



Generating functionals

Let 01,...,0,, be test functions from LR (Qg’). The functional derivative
Dy, - - - Dy, Z(J) exists, and the following formula holds true:

m

Dy, - Dy Z(J) = = [ e Eml@tied) <H <€019i>> dIP(¢).
° cx(el) =

Furthermore, the functional derivative Dy, - - - Dy, Z(J) can be uniquely
identified with the distribution from L ((QQ’ )m) :

M0 00) == [f T16:0q)x

ngny i=1
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Generating functionals

In an alternative way, one can define the functional derivative Z(J)

of Z(J) as the distribution from Lf; (Q)) satisfying

_6
oJ(y)

Lov ) (570520) D)y = | Sz0+e0)]

e=0

Using this notation, we obtain that

;O [ e Emlo)+lod) (fn[ ) (X,-)) dP(p) € L ((QQI)m) '
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Generating functionals

Proposition

The correlations functions G'™) (xq, ..., xn) € L ((Qﬁ’)m) are given by

Zy 0 )

(m) _2
G (X m) = S ST )

Z(J) ls=o0 -
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Free-field theory

We set Zo(J) := Z(J; 9,7, a2,0).

Proposition

Zo(J) = Ngexp {ng Jay 4G (lIx = yll,)I(y)d"x d’Vy}, where Ng
denotes a normalization constant
For J € LR, the equation

(Fw@.0)+2) gy =J

has unique solution ¢, € Lr. Indeed, ¢, (x) = % is a test
3 Aw; (Il )+

function satisfying @, (0) = 0. Furthermore,

1 .
(X) KHX(%AW{S(”KHP) Iy ) e J(X) = G(HXHp) & J(X) n D]R-
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Free-field theory

We now change variables in Zy(J) as ¢ = @0 + @,
1 e<‘P0vJ) ,
= — (@.d) — (¢',J) AN
Z() =5 / elv) P = / 99 gP’ (¢)
Lx(Q}) Lr(QY)
1 e .
= Z / (¢ (3W(3.0)+% ) o) dP’ (q)’) o(G*J.J)
Lr(Q})
N/e(G*JJ> _NleXp{/N/NJ(X)G(HX_}/HP)J(y)dNX dNy}
p 7 Qp
O]

v
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Free-field theory

The correlation functions G (xl, ..., Xm) of the free-field theory are
obtained from the funct|ona| derivatives of Zy(J) at J =0:

)5 <xm>Z°“)]J_o

o sgesee] [ 06U~y ¢y

«

v
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Perturbation expansions for phi-4-theories

The existence of a convergent power series expansion for Z(J) (the
perturbation expansion) in the coupling parameter ay follows from the fact

that exp (—Eint (@) +

(¢, J)) is an integrable function, by using the

dominated convergence theorem, more precisely, we have

Z(J) = Zo(J)+

2 lm(5) ) q ] (few)er oo
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Perturbation expansions for phi-4-theories

Assume that P(¢) = ¢*. The n-point correlation function of the field ¢
admits the following convergent power series in the coupling constant:
() 20} gl
G (xl,...,xn):7 Gy’ (x1,...,x -I-ZG (X1, Xn)
where
n 1 [(—as\™
G,Sq) (x1,..., Xp) 1= — <T4> X
G(n+4m) ALY
0 (21,21, 21,21, . . ., Zms Zms Zms Zmy X1y - -« s xn) TT d" z;
i=1
(@) )
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Ginzburg-Landau phenomenology
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Ginzburg-Landau phenomenology

A non-Archimedean Ginzburg-Landau free energy:

E(9.J): E(,J;6,7, a2, a4) = 7(2T) {00 =9 F g,
Q' xQy Wa(HX—yII )
NELE [ d”x+'x4gT)/ /<P J(x)d"x,
Qp Qp

where J, ¢ € Dp, and

YT) = 7+0((T=To)) aa(T)= (T~ Te)+ O((T — To)*);
6(4(7_) = 0C4+O((T—TC)),

where T is temperature, T¢ is the critical temperature and ¢ > 0, ag > 0.
Z,; symmetry
If J =0, then E is invariant under ¢ — —@.
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Ginzburg-Landau phenomenology

o We consider that ¢ € D is the local order parameter of a
continuous Ising system with ‘external magnetic field" J € D]’R.
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Ginzburg-Landau phenomenology

o We consider that ¢ € D is the local order parameter of a
continuous Ising system with ‘external magnetic field" J € D]’R.

@ The system is contained in the ball B,N. We divide this ball into

sub-balls (boxes) BY, (i), i € G;. The volume of each of these balls is

p~'N and the radius is a := p~'.
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Ginzburg-Landau phenomenology

o We consider that ¢ € D is the local order parameter of a
continuous Ising system with ‘external magnetic field" J € D]’R.

@ The system is contained in the ball B,N. We divide this ball into
sub-balls (boxes) BY, (i), i € G;. The volume of each of these balls is

p~'N and the radius is a := p~'.

e Each ¢ (i) € R represents the ‘average magnetization' in the ball

B, (i). We take ¢ (x) = Yieg, @ (i) Q <p' Ix — i||p> which is a
locally constant function.
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Ginzburg-Landau phenomenology

o We consider that ¢ € D is the local order parameter of a
continuous Ising system with ‘external magnetic field" J € D]’R.

@ The system is contained in the ball B,N. We divide this ball into

sub-balls (boxes) BY, (i), i € G;. The volume of each of these balls is

p~'N and the radius is a := p~'.

e Each ¢ (i) € R represents the ‘average magnetization' in the ball
BY, (i). We take ¢ (x) = Yicg, ¢ (i) Q <p’ Ix — i||p> which is a
locally constant function.

@ Notice that the distance between two points in the ball i 4 p’ZQ’ is
< p~!. Then @ (x) varies appreciable over distances larger than p~/.
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Ginzburg-Landau phenomenology

Then considering ¢ (i) € R as the continuous spin at the site i € G, the
partition function of our continuos Ising model is

2z () = Z e PE(9(i).J(i)
{o(i); icG)}

The minimizers of the functional E(¢,0), ¢ € Df are constant solutions
of

dN
R R el EAO RN ORI )
B

i.e. solutions of
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Spontaneous symmetry breaking

If J =0, the field ¢ € DI/R is a minimum of the energy functional E, if it
satisfies (5). When T > T¢ we have ay > 0 and the ground state is

¢y = 0. In contrast, when T < T¢, ap <0, there is a degenerate ground
state ¢, with

Po =1/ "

This implies that below T the systems must pick one of the two states
+¢, or —¢@,, which means that there is a spontaneous symmetry
breaking.
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