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INTRODUCTION

In arXiv:2006.05559, Non-Archimedean Statistical Field Theory
We construct (in a rigorous mathematical way) interacting quantum �eld
theories over a p-adic spacetime in an arbitrary dimension.

We provide a large family of energy functionals E (ϕ, J) admitting natural
discretizations in �nite-dimensional vector spaces such that the partition
function

Z phys(J) =
Z
D(ϕ)e�

1
KB T

E (ϕ,J ) (1)

can be de�ned rigorously as the limit of the mentioned discretizations.
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INTRODUCTION

Key fact: DR = lim�!D
l
R = [∞

l=1DlR, DlR ,! Dl+1R . Here DlR is
�nite-dimensional real vector space. Given a test function ϕ 2 DR,
there is l such that ϕ 2 DlR, and thus ϕ has a natural discretization.

The key fact is not true for the real Schwartz space!

Discrete means that J 2 DlR, and
Z physl (J) =

R
DlR
D(ϕ)e�

1
KB T

E (ϕ,J )

In this case there is a cut-o¤, the support of the functions in DlR is
the ball with center at the origin and radius pl .

Continuous means J 2 DR, and Z phys(J) =
R
DR
D(ϕ)e�

1
KB T

E (ϕ,J )

In this case there is no cut-o¤ but the �elds still have a natural
discretizacion.
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INTRODUCTION

The goal of the work is to understand the limit:R
DlR
D(ϕ)e�

1
KB T

E (ϕ,J ) !
R
DR
D(ϕ)e�

1
KB T

E (ϕ,J ) as l ! ∞.

Our main result is the construction of a measure on a function space
such that Z phys(J) makes mathematical sense, and the calculations
of the n-point correlation functions can be carried out using
perturbation expansions via functional derivatives, in a rigorous
mathematical way.

Our results include ϕ4-theories. In this case, E (ϕ, J) can be
interpreted as a Landau-Ginzburg functional of a continuous Ising
model (i.e. ϕ 2 R) with external magnetic �eld J.

If J = 0, then E (ϕ, 0) is invariant under ϕ ! �ϕ. We show that the
systems attached to discrete versions of E (ϕ, 0) have spontaneous
breaking symmetry when the temperature T is less than the critical
temperature.
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INTRODUCTION

E (ϕ, J) =
γ

2

R
QN
p

ϕ (x)W (∂, δ) ϕ (x) dNx �
R

QN
p

J (x) ϕ (x) dNx

+
α2
2

R
QN
p

ϕ2 (x) dNx +
α4
2

R
QN
p

ϕ4 (x) dNx ,

W (∂, δ) ϕ (x) = F�1κ!x (Awδ
(kκk)Fx!κ ϕ) is pseudodi¤erential operator,

whose symbol has a singularity at the origin.

The operator
R

QN
p

ϕ (x)W (∂, δ) ϕ (x) dNx is non local. Then E (ϕ, J) is a

non local action.
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INTRODUCTION

An important example of a W (∂, δ) operator is the Taibleson-Vladimirov
operator, which is de�ned as

Dβφ (x) =
1� pβ

1� p�β�N

Z
QN
p

φ (x � y)� φ (x)

kykβ+N
p

dNy = F�1κ!x

�
kκkβ

p Fx!κφ
�
,

where β > 0 and φ 2 D
�
QN
p

�
.

If N = β = 1, the energy functional

S(ϕ) = C
RR

Qp�Qp

(
ϕ (x)� ϕ (y)
jx � y jp

)2
dxdy

appears in p-adic string theory.

Spokoiny, Boris L.: Quantum geometry of non-Archimedean particles and
strings. Phys. Lett. B 208(3-4), 401�406 (1988).
All the results presented in the article are valid if Qp is replaced by any
non-Archimedean local �eld.
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Discretization of Energy Functionals
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The W operators

Take R+ := fx 2 R; x � 0g, and �x a function wδ : QN
p ! R+

satisfying: (i) wδ (y) is a radial i.e. wδ(y) = wδ(kykp); (ii) there exist
constants C0,C1 > 0 and δ > N such that

C0 kykδ
p � wδ(kykp) � C1 kyk

δ
p , for y 2 QN

p .

We now de�ne the operator

Wδ ϕ(x) =
Z

QN
p

ϕ (x � y)� ϕ (x)
wδ (kykp)

dNy , for ϕ 2 D
�

QN
p

�
.

The operator Wδ is pseudodi¤erential, more precisely, if

Awδ
(κ) :=

Z
QN
p

1� χp (y � κ)
wδ (kykp)

dNy ,

then

Wδ ϕ (x) = �F�1κ!x [Awδ
(κ)Fx!κ ϕ] =: �W (∂, δ) ϕ (x) , for ϕ 2 D

�
QN
p

�
.
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Discretization of Energy Functionals

A discretization is obtained by considering truncations of p-adic
numbers of the form
a�lp�l + a�l+1p�l+1 + . . .+ a0 + . . .+ al�1pl�1, for some l � 1, i.e.
elements from Gl := p�lZN

p /plZN
p .

We denote by DlR(QN
p ) := DlR the R-vector space of all test

functions of the form ϕ (x) = ∑
i2Gl

ϕ (i)Ω
�
pl kx � ikp

�
, ϕ (i) 2 R,

where i runs through a �xed system of representatives of Gl , and
Ω
�
pl kx � ikp

�
is the characteristic function of the ball i+ plZN

p .

Notice that ϕ is supported on p�lZN
p and that DlR is a �nite

dimensional vector space spanned by the
basis

n
Ω
�
pl kx � ikp

�o
i2Gl

. We identify ϕ 2 DlR with the column
vector [ϕ (i)]i2Gl .
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Discretization of Energy Functionals

If m is positive integer then ϕm (x) =(
∑
i2Gl

ϕ (i)Ω
�
pl kx � ikp

�)m
= ∑

i2Gl
ϕm (i)Ω

�
pl kx � ikp

�
.

The functional E 0m(ϕ) :=
R

QN
p

ϕm (x) dNx for m 2 Nr f0g, ϕ 2 DlR,

discretizes as E 0m(ϕ) = p
�lN ∑

i2Gl
ϕm (i).

E0(ϕ) := γ
4

RR
QN
p �QN

p

fϕ(x )�ϕ(y )g2

wδ(kx�ykp)
dNxdNy + α2

2

R
QN
p

ϕ2 (x) dNx � 0.

The restriction of E0 to DlR (denoted as E
(l)
0 ) provides a natural

discretization of E0.
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Discretization of Energy Functionals

We set U (l) := U = [Ui,j(l)]i,j2Gl , where

Ui,j(l) :=
�γ

2
d (l ,wδ) +

α2
2

�
δi,j �

γ

2
Ai,j(l),

d (l ,wδ) :=
Z

QN
p nBN�l

dNy
wδ (kykp)

and Ai,j (l) :=

8><>:
p�lN

wδ(ki�jkp)
if i 6= j

0 if i = j.

.

Lemma

With the above notation the following formula holds true:

E (l)0 (ϕ) = [ϕ (i)]
T
i2Gl p

�lNU(l) [ϕ (i)]i2Gl = ∑
i,j2Gl

p�lNUi,j(l)ϕ (i) ϕ (j) � 0,

for ϕ 2 DlR, where U is a symmetric, positive de�nite matrix.
Consequently p�lNU(l) is a diagonalizable and invertible matrix.
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Lizorkin spaces of second kind

The p-adic Lizorkin space of second kind ;

L := L(QN
p ) =

8<:ϕ 2 D(QN
p );

R
QN
p

ϕ (x) dNx = 0

9=;
LR := LR(Q

N
p ) = L(QN

p ) \DR(Q
N
p ), the real version.

FL := FL(QN
p ) =

nbϕ 2 D(QN
p ); bϕ (0) = 0o ,

The Fourier transform gives rise to an isomorphism of C-vector spaces
from L into FL.

The topological dual L0 := L0(QN
p ) of the space L is called the p-adic

Lizorkin space of distributions of second kind. The real version is denoted
as L0

R
:= L0

R
(QN

p ).
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Lizorkin spaces of second kind

The discrete p-adic Lizorkin space of second kind:

Ll := Ll (QN
p )

=

(
ϕ (x) = ∑

i2Gl
ϕ (i)Ω

�
pl kx � ikp

�
, ϕ (i) 2 C; p�lN ∑

i2Gl
ϕ (i) = 0

)
,

l 2 Nr f0g. The real version LlR := LlR(QN
p ) = Ll \DlR.

FLl := FLl (QN
p ) =(bϕ (κ) = ∑

i2Gl
bϕ (i)Ω

�
pl kκ � ikp

�
, bϕ (i) 2 C; bϕ (0) = 0) ,

The Fourier transform F : Ll ! FLl is an automorphism of C-vector
spaces.
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Energy functionals in the momenta space

E0(ϕ) =
γ

2

R
QN
p

ϕ (x) (�Wδ) ϕ (x) dNx +
α2
2

R
QN
p

ϕ2 (x) dNx

=
γ

2

R
QN
p

ϕ (x)W (∂, δ) ϕ (x) dNx +
α2
2

R
QN
p

ϕ2 (x) dNx

=
R

QN
p

�γ

2
Awδ

(kκkp) +
α2
2

�
jbϕ (κ)j2 dNκ.

For ϕ 2 DlR, we have

E0(ϕ) = p�lN ∑
j2Glrf0g

�γ

2
Awδ

(kjkp) +
α2
2

�
jbϕ (j)j2

+ jbϕ (0)j2
8<: R
p lZN

p

�γ

2
Awδ

(kzkp) +
α2
2

�
dN z

9=; ,
where bϕ (j) = bϕ1 (j) +p�1bϕ2 (j) 2 C.
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Energy functionals in the momenta space

We use the alternative notation cϕ1 (j) = Re (bϕ (j)), bϕ2 (j) = Im (bϕ (j)).
Notice that

FLlR =(bϕ (κ) = ∑
i2Gl

bϕ (i)Ω
�
pl kκ � ikp

�
, bϕ (i) 2 C; bϕ (0) = 0, bϕ (κ) = bϕ (�κ)

)
,

and that the condition bϕ (κ) = bϕ (�κ) implies that bϕ1 (�i) = bϕ1 (i) andbϕ2 (�i) = �bϕ2 (i) for any i 2 Gl . This implies that FLlR is R-vector
space of dimension #Gl �1.

E (l)0 (ϕ) = 2p
�lN ∑

r2f1,2g
∑
j2G+l

�γ

2
Awδ

(kjkp) +
α2
2

�cϕr 2 (j) .
Zúñiga-Galindo ( ) QFT May 21, 2021 15 / 55



Energy functionals in the momenta space

We now de�ne the diagonal matrix B (r ) =
h
B (r )i,j

i
i,j2G+l

, r = 1, 2, where

B (r )i,j :=

8<:
γ
2Awδ

(kjkp) + α2
2 if i = j

0 if i 6= j.

Notice that B (1)i,j = B
(2)
i,j .

We set

B(l) := B(l , δ,γ, α2) =
�
B (1) 0
0 B (2).

�
The matrix B = [Bi,j] is a diagonal of size 2

�
#G+l

�
� 2

�
#G+l

�
. In

addition, the indices i, j run through two disjoint copies of G+l .
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Energy functionals in the momenta space

Lemma
Assume that α2 > 0. With the above notation the following formula holds
true:

E (l)0 (ϕ) := E (l)0
�cϕ1 (j) ,cϕ2 (j) ; j 2 G+l �
=

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#T
2p�lNB(l)

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#
� 0,

for ϕ 2 LlR ' FLlR ' R(#Gl �1), where 2p�lNB(l) is a diagonal, positive
de�nite, invertible matrix.
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Gaussian measures
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Gaussian measures

Z := Z(δ,γ, α2) =
Z

FLR(QN
p )

D(ϕ)e�E0(ϕ).

We set

Z (l) = Z (l)(δ,γ, α2) =
Z

FLlR(QN
p )

Dl (ϕ) e
�E0(ϕ)

=: Nl
Z

R(p
2lN�1)

exp

0@� " [cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#T
2p�lNB(l)

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#1A
� ∏
i2G+l

dcϕ1 (i) dcϕ2 (i) ,
where Nl is a normalization constant, and ∏i2G+l dcϕ1 (i) dcϕ2 (i) is the
Lebesgue measure of R(p

2lN�1).
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Gaussian measures

Z (l) is a Gaussian integral, then

Z (l) = Nl
(2π)

(p2lN�1)
2p

det 4p�lNB(l)
= Nl

�π

2

� (p2lN�1)
2 p

lN(p2lN�1)
2

p
detB

.

We set

Nl =
� 2

π

� (p2lN�1)
2

p
detB

p
lN(p2lN�1)

2

.
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Gaussian measures

We de�ne the following family of Gaussian measures:

dPl

 "
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#!

= Nl exp(�
"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#T
2p�lNB(l)

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#
)

� ∏
i2G+l

dcϕ1 (i) dcϕ2 (i)
in FLlR ' R(p

2lN�1), for l 2 Nr f0g.
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Gaussian measures

Thus for any Borel subset A of R(p
2lN�1) ' FLlR and any continuous and

bounded function f : FLlR ! R the integral

R
A
f

 "
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#!
dPl

 "
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#!
=:
R
A
f (bϕ) dPl (bϕ)

is well-de�ned.
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Gaussian measures

Lemma

There exists a probability measure space (X ,F ,P) and random variables"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#
, for l 2 Nr f0g ,

such that Pl is the joint probability distribution of

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#
. The

space (X ,F ,P) is unique up to isomorphisms of probability measure
spaces. Furthermore, for any bounded continuous function f supported in
FLlR, we have R

FLlR

f (bϕ) dPl (bϕ) = R
FLlR

f (bϕ) dP (bϕ) .
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Gaussian measures

For δ > N, γ, α2 > 0, we de�ne the operator

D
�
QN
p

�
! L2

�
QN
p

�
ϕ !

�γ
2W (∂, δ) + α2

2

��1
ϕ,

where
�γ
2W (∂, δ) + α2

2

��1
ϕ (x) := F�1κ!x

�
Fx!κ ϕ

γ
2 Awδ

(kκkp )+
α2
2

�
.
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Gaussian measures

We de�ne the distribution

G (x) := G (x ; δ,γ, α2) = F�1κ!x

 
1

γ
2Awδ

(kκkp) + α2
2

!
2 D0

�
QN
p

�
.

By using the fact that 1
γ
2 Awδ

(kκkp )+
α2
2
is radial and (F (F ϕ))(κ) = ϕ(�κ)

one veri�es that
G (x) 2 D0R

�
QN
p

�
.
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Gaussian measures

B : DR

�
QN
p

�
�DR

�
QN
p

�
! R

(ϕ, θ) !
D

ϕ,
�γ
2W (∂, δ) + α2

2

��1
θ
E
,

where h�, �i denotes the scalar product in L2
�
QN
p

�
.

Lemma

B is a positive, continuous bilinear form from DR

�
QN
p

�
�DR

�
QN
p

�
into

R.

Lemma

For ϕ 2 LlR ' FLlR,

Bl (ϕ, ϕ) := B(ϕ, ϕ) =

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#T
2p�lNB�1(l)

"
[cϕ1 (j)]j2G+l
[cϕ2 (j)]j2G+l

#
.
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Gaussian measures

Corollary

The collection fBY ;Y �nite dimensional subspace of LRg is completely
determined by the collection fBl ; l 2 Nr f0gg. In the sense that given
any BY there is an integer l and a subset J � G+l , the case J = ∅ is
included, such that BY = Bl jfbϕ1(j)=0,bϕ2(j)=0;j/2Jg.
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Gaussian measures in the non-Archimedean framework

The spaces
LR

�
QN
p

�
,! L2R

�
QN
p

�
,! L0R

�
QN
p

�
form a Gel�fand triple, that is, LR

�
QN
p

�
is a nuclear space which is densely

and continuously embedded in L2R and kgk
2
2 = hg , gi for g 2 LR

�
QN
p

�
.

The mapping
C : LR

�
QN
p

�
! C

f ! e�
1
2B(f ,f )

de�nes a characteristic functional, i.e. C is continuous, positive de�nite
and C (0) = 1.
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Gaussian measures in the non-Archimedean framework

By the Bochner-Minlos theorem, there exists a probability measure
P := P (δ,γ, α2) called the canonical Gaussian measure on�
L0R
�
QN
p

�
,B
�
, given by its characteristic functional asR

L0R(QN
p )
e
p
�1hW ,f idP(W ) = e�

1
2B(f ,f ), f 2 LR

�
QN
p

�
. (2)
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Gaussian measures in the non-Archimedean framework

The measure P is uniquely determined by the family of Gaussian measures�
PY ;Y � LR, �nite dimensional space

	
,

where
PY (A) =

1

(2π)
n
2

R
A
e�

1
2B(ψ,ψ)dψ,

if Y has dimension n.
Equivalently, P is uniquely determined by the family of bilinear forms�

BY ;Y � LR, �nite dimensional space
	
,

where BY denotes the restriction of the scalar product to B to Y .

Equivalently, P is uniquely determined by the family of bilinear forms
fBl ; l 2 Nr f0gg.
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Gaussian measures in the non-Archimedean framework

Theorem
Assume that δ > N, γ > 0, α2 > 0. (i) The cylinder probability measure
P = P (δ,γ, α2) is uniquely determined by the sequence
Pl = Pl (δ,γ, α2), l 2 Nr f0g, of Gaussian measures. (ii) Let
f : FLR

�
QN
p

�
! R be a continuous and bounded function. Then

lim
l!∞

R
FLlR(QN

p )
f (bϕ) dPl (bϕ) = R

FLR(QN
p )
f (bϕ) dP (bϕ) .

The sequence of discretizations E (l)0 determines a probability
measure P in L0R

�
QN
p

�
.
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Partition functions and generating functionals
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Partition functions

We consider interactions of the form:
P(X ) = a3X 3 + a4X 4 + . . .+ a2kX 2D 2 R [X ], with D � 2,
satisfying P(α) � 0 for any α 2 R. Which implies that
exp

�
� α4

2

R
P(ϕ)dNx

�
� 1.

Each of these theories corresponds to a thermally �uctuating �eld
which is de�ned by means of a functional integral representation of
the partition function.

All the thermodynamic quantities and correlation functions of the
system can be obtained by functional di¤erentiation from a
generating functional as in the classical case.
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Partition functions

We assume that ϕ 2 LR

�
QN
p

�
represents a �eld that performs thermal

�uctuations. We also assume that in the normal phase the expectation
value of the �eld ϕ is zero. Then the �uctuations take place around zero.

The size of these �uctuations is controlled by the energy functional:

E (ϕ) := E0(ϕ) + Eint(ϕ),

where
Eint(ϕ) :=

α4
4

Z
QN
p

P (ϕ (x)) dNx , α4 � 0,

corresponds to the interaction energy.
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Partition functions

De�nition
Assume that δ > N, and γ, α2 > 0. The free-partition function is de�ned
as

Z0 = Z0(δ,γ, α2) =
Z

LR(QN
p )

dP (ϕ) .

The discrete free-partition function is de�ned as

Z (l)0 = Z (l)0 (δ,γ, α2) =
Z

LlR(QN
p )

dPl (ϕ)

for l 2 Nr f0g.

liml!∞ Z (l)0 = Z0. Notice that the term e�E0(ϕ) is used to construct the
measure P (ϕ).
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Partition functions

De�nition
Assume that δ > N, and γ, α2, α4 > 0. The partition function is de�ned
as

Z = Z(δ,γ, α2, α4) =
Z

LR(QN
p )

e�Eint(ϕ)dP (ϕ) .

The discrete partition functions are de�ned as

Z (l) = Z (l)(δ,γ, α2, α4) =
Z

LlR(QN
p )

e�Eint(ϕ)dPl (ϕ) ,

for l 2 Nr f0g.
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Partition functions

From a mathematical perspective a P (ϕ)-theory is given by a cylinder
probability measure of the form

1LR
(ϕ) e�Eint(ϕ)dPZ

LR(QN
p )
e�Eint(ϕ)dP

=
1LR

(ϕ) e�Eint(ϕ)dP

Z (3)

in the space of �elds LR

�
QN
p

�
. It is important to mention that we do not

require the Wick regularization operation in e�Eint(ϕ) because we are
restricting the �elds to be test functions
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Partition functions

The m-point correlation functions of a �eld ϕ 2 LR

�
QN
p

�
are de�ned as

G (m) (x1, . . . , xm) =
1
Z

Z
LR(QN

p )

 
m

∏
i=1

ϕ (xi )

!
e�Eint(ϕ)dP.

The discrete m-point correlation functions of a �eld ϕ 2 LlR
�
QN
p

�
are

de�ned as

G (m)l (x1, . . . , xm) =
1
Z (l)

Z
LlR(QN

p )

 
m

∏
i=1

ϕ (xi )

!
e�Eint(ϕ)dPl ,

for l 2 Nr f0g.
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Generating functionals

We now introduce a current J(x) 2 LR

�
QN
p

�
and add to the energy

functional E (ϕ) a linear interaction energy of this current with the �eld
ϕ (x),

Esource(ϕ, J) := �
R

QN
p

ϕ (x) J(x)dNx ,

in this way we get a new energy functional

E (ϕ, J) := E (ϕ) + Esource(ϕ, J).

Notice that Esource(ϕ, J) = � hϕ, Ji, where h�, �i denotes the scalar
product of L2(QN

p ).
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Generating functionals

De�nition

Assume that δ > N, and γ, α2, α4 > 0. The partition function
corresponding to the energy functional E (ϕ, J) is de�ned as

Z(J; δ,γ, α2, α4) := Z(J) = 1
Z0

Z
LR(QN

p )

e�Eint(ϕ)+hϕ,J i dP,

and the discrete versions

Z (l)(J; δ,γ, α2, α4) := Z (l)(J) = 1

Z (l)0

Z
LlR(QN

p )

e�Eint(ϕ)+hϕ,J i dPl ,

for l 2 Nr f0g.
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Generating functionals

De�nition

For θ 2 LR

�
QN
p

�
, the functional derivative DθZ(J) of Z(J) is de�ned as

DθZ(J) = lim
ε!0

Z(J + εθ)�Z(J)
ε

=

�
d
dε
Z(J + εθ)

�
ε=0

.
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Generating functionals

Lemma

Let θ1,. . . ,θm be test functions from LR

�
QN
p

�
. The functional derivative

Dθ1 � � �DθmZ(J) exists, and the following formula holds true:

Dθ1 � � �DθmZ(J) =
1
Z0

R
LR(QN

p )
e�Eint(ϕ)+hϕ,J i

�
m
∏
i=1
hϕ, θi i

�
dP(ϕ).

Furthermore, the functional derivative Dθ1 � � �DθmZ(J) can be uniquely
identi�ed with the distribution from L0R

��
QN
p

�m�
:

m
∏
i=1

θi (xi )!
1
Z0

R
� � �
R

QN
p �����QN

p

m
∏
i=1

θi (xi )�8<: R
LR(QN

p )
e�Eint(ϕ)+hϕ,J i

m
∏
i=1

ϕ (xi ) dP(ϕ)

9=; m
∏
i=1
dNxi .
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Generating functionals

In an alternative way, one can de�ne the functional derivative δ
δJ (y )Z(J)

of Z(J) as the distribution from L0R
�
QN
p

�
satisfying

R
QN
p

θ (y)
�

δ

δJ (y)
Z(J)

�
(y) dNy =

�
d
dε
Z(J + εθ)

�
ε=0

.

Using this notation, we obtain that

δ

δJ (x1)
� � � δ

δJ (xm)
Z(J) =

1
Z0

R
LR(QN

p )
e�Eint(ϕ)+hϕ,J i

�
m
∏
i=1

ϕ (xi )
�
dP(ϕ) 2 L0R

��
QN
p

�m�
.
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Generating functionals

Proposition

The correlations functions G (m) (x1, . . . , xm) 2 L0R
��

QN
p

�m�
are given by

G (m) (x1, . . . , xm) =
Z0
Z

δ

δJ (x1)
� � � δ

δJ (xm)
Z(J) jJ=0 .
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Free-�eld theory

We set Z0(J) := Z(J; δ,γ, α2, 0).

Proposition

Z0(J) = N 0
0 exp

nR
QN
p

R
QN
p
J(x)G (kx � ykp)J(y)dNx dNy

o
, where N 0

0

denotes a normalization constant
For J 2 LR, the equation�γ

2
W (∂, δ) +

α2
2

�
ϕ0 = J

has unique solution ϕ0 2 LR. Indeed, cϕ0 (κ) = bJ (κ)
γ
2 Awδ

(kκkp )+
α2
2
is a test

function satisfying cϕ0 (0) = 0. Furthermore,
ϕ0 (x) = F�1κ!x (

1
γ
2Awδ

(kκkp) + α2
2

) � J(x) = G (kxkp) � J(x) in D0R.
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Free-�eld theory

Proof.
We now change variables in Z0(J) as ϕ = ϕ0 + ϕ0,

Z0(J) =
1
Z0

Z
LR(QN

p )

ehϕ,J i dP =
ehϕ0,J i

Z0

Z
LR(QN

p )

ehϕ
0,J i dP0

�
ϕ0
�

=

0B@ 1
Z0

Z
LR(QN

p )

ehϕ0,( γ
2W (∂,δ)+

α2
2 )ϕ0i dP0

�
ϕ0
�1CA ehG �J ,J i

= N 0
0e
hG �J ,J i = N 0

0 exp
�Z

QN
p

Z
QN
p

J(x)G (kx � ykp)J(y)dNx dNy
�
.
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Free-�eld theory

The correlation functions G (m)0 (x1, . . . , xm) of the free-�eld theory are
obtained from the functional derivatives of Z0(J) at J = 0:

Proposition

G (m)0 (x1, . . . , xm) =
�

δ

δJ (x1)
� � � δ

δJ (xm)
Z0(J)

�
J=0

= N 0
0

δ

δJ (x1)
� � � δ

δJ (xm)
exp

�Z
QN
p

Z
QN
p

J(x)G (kx � ykp)J(y)dNx dNy
�
jJ=0 .
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Perturbation expansions for phi-4-theories

The existence of a convergent power series expansion for Z (J) (the
perturbation expansion) in the coupling parameter α4 follows from the fact
that exp (�Eint(ϕ) + hϕ, Ji) is an integrable function, by using the
dominated convergence theorem, more precisely, we have

Z(J) = Z0(J)+

1
Z0

∞

∑
m=1

1
m!

��α4
4

�m Z
LR(QN

p )

8>><>>:
Z
(QN

p )
m

�
m
∏
i=1

ϕ4 (zi )
�
ehϕ,J i

m
∏
i=1
dN zi

9>>=>>; dP(ϕ)

=: Z0(J) +
∞

∑
m=1

Zm(J).
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Perturbation expansions for phi-4-theories

Theorem

Assume that P(ϕ) = ϕ4. The n-point correlation function of the �eld ϕ
admits the following convergent power series in the coupling constant:

G (n) (x1, . . . , xn) =
Z0
Z

(
G (n)0 (x1, . . . , xn) +

∞

∑
m=1

G (n)m (x1, . . . , xn)

)
,

where

G (n)m (x1, . . . , xn) :=
1
m!

��α4
4

�m
�Z

(QN
p )

m

G (n+4m)0 (z1, z1, z1, z1, . . . , zm , zm , zm , zm , x1, . . . , xn)
m
∏
i=1
dN zi .
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Ginzburg-Landau phenomenology
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Ginzburg-Landau phenomenology

A non-Archimedean Ginzburg-Landau free energy:

E (ϕ, J) : E (ϕ, J; δ,γ, α2, α4) =
γ(T )
2

RR
QN
p �QN

p

fϕ (x)� ϕ (y)g2

wδ

�
kx � ykp

� dNxdNy

+
α2(T )
2

Z
QN
p

ϕ2 (x) dNx +
α4(T )
4

Z
QN
p

ϕ4 (x) dNx �
Z

QN
p

ϕ (x) J(x)dNx ,

where J, ϕ 2 DR, and

γ(T ) = γ+O((T � Tc )); α2(T ) = (T � Tc ) +O((T � Tc )2);
α4(T ) = α4 +O((T � Tc )),

where T is temperature, TC is the critical temperature and γ > 0, α4 > 0.
Z2 symmetry
If J = 0, then E is invariant under ϕ ! �ϕ.
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Ginzburg-Landau phenomenology

We consider that ϕ 2 DlR is the local order parameter of a
continuous Ising system with �external magnetic �eld�J 2 DlR.

The system is contained in the ball BNl . We divide this ball into
sub-balls (boxes) BN�l (i), i 2 Gl . The volume of each of these balls is
p�lN and the radius is a := p�l .

Each ϕ (i) 2 R represents the �average magnetization�in the ball

BN�l (i). We take ϕ (x) = ∑i2Gl ϕ (i)Ω
�
pl kx � ikp

�
which is a

locally constant function.

Notice that the distance between two points in the ball i+ plZN
p is

� p�l . Then ϕ (x) varies appreciable over distances larger than p�l .
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sub-balls (boxes) BN�l (i), i 2 Gl . The volume of each of these balls is
p�lN and the radius is a := p�l .

Each ϕ (i) 2 R represents the �average magnetization�in the ball

BN�l (i). We take ϕ (x) = ∑i2Gl ϕ (i)Ω
�
pl kx � ikp

�
which is a

locally constant function.

Notice that the distance between two points in the ball i+ plZN
p is

� p�l . Then ϕ (x) varies appreciable over distances larger than p�l .
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Ginzburg-Landau phenomenology

Then considering ϕ (i) 2 R as the continuous spin at the site i 2 Gl , the
partition function of our continuos Ising model is

Z (l) (β) = ∑
fϕ(i); i2Glg

e�βE (ϕ(i),J (i)).

Theorem

The minimizers of the functional E (ϕ, 0), ϕ 2 DlR are constant solutions
of 0B@�γ

2
W(l)

δ + α2 �
γ

2

Z
QN
p nBNl

dNy
wδ (kykp)

1CA ϕ (x) + α4ϕ3 (x) = 0, (4)

i.e. solutions of
ϕ
�
α4ϕ2 + α2

�
= 0. (5)
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Spontaneous symmetry breaking

If J = 0, the �eld ϕ 2 D l

R is a minimum of the energy functional E , if it
satis�es (5). When T > TC we have α2 > 0 and the ground state is
ϕ0 = 0. In contrast, when T < TC , α2 < 0, there is a degenerate ground
state �ϕ0 with

ϕ0 =

r
�α2

α4
.

This implies that below TC the systems must pick one of the two states
+ϕ0 or �ϕ0, which means that there is a spontaneous symmetry
breaking.
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