Non-Archimedean Statistical Field Theory

W. A. Zúñiga-Galindo

University of Texas Rio Grande Valley, USA and Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México

May 21, 2021

INTRODUCTION

In arXiv:2006.05559, Non-Archimedean Statistical Field Theory
We construct (in a rigorous mathematical way) interacting quantum field theories over a p-adic spacetime in an arbitrary dimension.

We provide a large family of energy functionals $E(\varphi, J)$ admitting natural discretizations in finite-dimensional vector spaces such that the partition function

$$
\begin{equation*}
Z^{\text {phys }}(J)=\int D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \tag{1}
\end{equation*}
$$

can be defined rigorously as the limit of the mentioned discretizations.

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\mathbb{R}}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{\prime+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is $/$ such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\longrightarrow}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{/+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is I such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.
- The key fact is not true for the real Schwartz space!

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\longrightarrow}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{/+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is / such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.
- The key fact is not true for the real Schwartz space!
- Discrete means that $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and $Z_{I}^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}$

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\longrightarrow}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{I+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is / such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.
- The key fact is not true for the real Schwartz space!
- Discrete means that $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and

$$
Z_{I}^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}
$$

- In this case there is a cut-off, the support of the functions in $\mathcal{D}_{\mathbb{R}}^{\prime}$ is the ball with center at the origin and radius p^{\prime}.

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\longrightarrow}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{I+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is / such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.
- The key fact is not true for the real Schwartz space!
- Discrete means that $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and

$$
Z_{I}^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}
$$

- In this case there is a cut-off, the support of the functions in $\mathcal{D}_{\mathbb{R}}^{\prime}$ is the ball with center at the origin and radius p^{\prime}.
- Continuous means $J \in \mathcal{D}_{\mathbb{R}}$, and $Z^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}$

INTRODUCTION

- Key fact: $\mathcal{D}_{\mathbb{R}}=\underset{\longrightarrow}{\lim } \mathcal{D}_{\mathbb{R}}^{\prime}=\cup_{I=1}^{\infty} \mathcal{D}_{\mathbb{R}}^{\prime}, \mathcal{D}_{\mathbb{R}}^{\prime} \hookrightarrow \mathcal{D}_{\mathbb{R}}^{\prime+1}$. Here $\mathcal{D}_{\mathbb{R}}^{\prime}$ is finite-dimensional real vector space. Given a test function $\varphi \in \mathcal{D}_{\mathbb{R}}$, there is / such that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and thus φ has a natural discretization.
- The key fact is not true for the real Schwartz space!
- Discrete means that $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$, and

$$
Z_{I}^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}
$$

- In this case there is a cut-off, the support of the functions in $\mathcal{D}_{\mathbb{R}}^{\prime}$ is the ball with center at the origin and radius p^{\prime}.
- Continuous means $J \in \mathcal{D}_{\mathbb{R}}$, and $Z^{\text {phys }}(J)=\int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}$
- In this case there is no cut-off but the fields still have a natural discretizacion.

INTRODUCTION

- The goal of the work is to understand the limit:
$\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \rightarrow \int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}$ as $I \rightarrow \infty$.

INTRODUCTION

- The goal of the work is to understand the limit:
$\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \rightarrow \int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)}$ as $I \rightarrow \infty$.
- Our main result is the construction of a measure on a function space such that $Z^{\text {phys }}(J)$ makes mathematical sense, and the calculations of the n-point correlation functions can be carried out using perturbation expansions via functional derivatives, in a rigorous mathematical way.

INTRODUCTION

- The goal of the work is to understand the limit:

$$
\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \rightarrow \int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \text { as } I \rightarrow \infty .
$$

- Our main result is the construction of a measure on a function space such that $Z^{\text {phys }}(J)$ makes mathematical sense, and the calculations of the n-point correlation functions can be carried out using perturbation expansions via functional derivatives, in a rigorous mathematical way.
- Our results include φ^{4}-theories. In this case, $E(\varphi, J)$ can be interpreted as a Landau-Ginzburg functional of a continuous Ising model (i.e. $\varphi \in \mathbb{R}$) with external magnetic field J.

INTRODUCTION

- The goal of the work is to understand the limit:

$$
\int_{\mathcal{D}_{\mathbb{R}}^{\prime}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \rightarrow \int_{\mathcal{D}_{\mathbb{R}}} D(\varphi) e^{-\frac{1}{K_{B} T} E(\varphi, J)} \text { as } I \rightarrow \infty .
$$

- Our main result is the construction of a measure on a function space such that $Z^{\text {phys }}(J)$ makes mathematical sense, and the calculations of the n-point correlation functions can be carried out using perturbation expansions via functional derivatives, in a rigorous mathematical way.
- Our results include φ^{4}-theories. In this case, $E(\varphi, J)$ can be interpreted as a Landau-Ginzburg functional of a continuous Ising model (i.e. $\varphi \in \mathbb{R}$) with external magnetic field J.
- If $J=0$, then $E(\varphi, 0)$ is invariant under $\varphi \rightarrow-\varphi$. We show that the systems attached to discrete versions of $E(\varphi, 0)$ have spontaneous breaking symmetry when the temperature T is less than the critical

INTRODUCTION

$$
\begin{aligned}
E(\varphi, J) & =\frac{\gamma}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi(x) \mathbf{W}(\partial, \delta) \varphi(x) d^{N} x-\int_{\mathbb{Q}_{p}^{N}} J(x) \varphi(x) d^{N} x \\
& +\frac{\alpha_{2}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x+\frac{\alpha_{4}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{4}(x) d^{N} x,
\end{aligned}
$$

$\mathbf{W}(\partial, \delta) \varphi(x)=\mathcal{F}_{\kappa \rightarrow x}^{-1}\left(A_{w_{\delta}}(\|\kappa\|) \mathcal{F}_{x \rightarrow \kappa} \varphi\right)$ is pseudodifferential operator, whose symbol has a singularity at the origin.

The operator $\int_{\mathbb{Q}_{p}^{N}} \varphi(x) \mathbf{W}(\partial, \delta) \varphi(x) d^{N} x$ is non local. Then $E(\varphi, J)$ is a non local action.

INTRODUCTION

An important example of a $\mathbf{W}(\partial, \delta)$ operator is the Taibleson-Vladimirov operator, which is defined as
$\mathbf{D}^{\beta} \phi(x)=\frac{1-p^{\beta}}{1-p^{-\beta-N}} \int_{Q_{p}^{N}} \frac{\phi(x-y)-\phi(x)}{\|y\|_{p}^{\beta+N}} d^{N} y=\mathcal{F}_{\kappa \rightarrow x}^{-1}\left(\|\kappa\|_{p}^{\beta} \mathcal{F}_{x \rightarrow \kappa} \phi\right)$,
where $\beta>0$ and $\phi \in \mathcal{D}\left(\mathbb{Q}_{p}^{N}\right)$.
If $N=\beta=1$, the energy functional

$$
S(\varphi)=C \iint_{\mathrm{Q}_{p} \times \mathrm{Q}_{p}}\left\{\frac{\varphi(x)-\varphi(y)}{|x-y|_{p}}\right\}^{2} d x d y
$$

appears in p-adic string theory.
Spokoiny, Boris L.: Quantum geometry of non-Archimedean particles and strings. Phys. Lett. B 208(3-4), 401-406 (1988).
All the results presented in the article are valid if Q_{p} is replaced by any non-Archimedean local field.

Discretization of Energy Functionals

The W operators

Take $\mathbb{R}_{+}:=\{x \in \mathbb{R} ; x \geq 0\}$, and fix a function $w_{\delta}: \mathbb{Q}_{p}^{N} \rightarrow \mathbb{R}_{+}$ satisfying: (i) $w_{\delta}(y)$ is a radial i.e. $w_{\delta}(y)=w_{\delta}\left(\|y\|_{p}\right)$; (ii) there exist constants $C_{0}, C_{1}>0$ and $\delta>N$ such that

$$
C_{0}\|y\|_{p}^{\delta} \leq w_{\delta}\left(\|y\|_{p}\right) \leq C_{1}\|y\|_{p}^{\delta}, \text { for } y \in \mathbb{Q}_{p}^{N}
$$

We now define the operator

$$
\mathbf{W}_{\delta} \varphi(x)=\int_{Q_{p}^{N}} \frac{\varphi(x-y)-\varphi(x)}{w_{\delta}\left(\|y\|_{p}\right)} d^{N} y, \text { for } \varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{N}\right) .
$$

The operator \mathbf{W}_{δ} is pseudodifferential, more precisely, if

$$
A_{w_{\delta}}(\kappa):=\int_{Q_{p}^{N}} \frac{1-\chi_{p}(y \cdot \kappa)}{w_{\delta}\left(\|y\|_{p}\right)} d^{N} y
$$

then
$\mathbf{W}_{\delta} \varphi(x)=-\mathcal{F}_{\kappa \rightarrow x}^{-1}\left[A_{w_{\delta}}(\kappa) \mathcal{F}_{x \rightarrow \kappa} \varphi\right]=:-\mathbf{W}(\partial, \delta) \varphi(x)$, for $\varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{N}\right)$

Discretization of Energy Functionals

- A discretization is obtained by considering truncations of p-adic numbers of the form $a_{-I} p^{-I}+a_{-I+1} p^{-I+1}+\ldots+a_{0}+\ldots+a_{l-1} p^{I-1}$, for some $I \geq 1$, i.e. elements from $G_{l}:=p^{-} \mathbb{Z}_{p}^{N} / p^{\prime} \mathbb{Z}_{p}^{N}$.

Discretization of Energy Functionals

- A discretization is obtained by considering truncations of p-adic numbers of the form
$a_{-I} p^{-I}+a_{-I+1} p^{-I+1}+\ldots+a_{0}+\ldots+a_{l-1} p^{I-1}$, for some $I \geq 1$, i.e. elements from $G_{l}:=p^{-I} \mathbb{Z}_{p}^{N} / p^{\prime} \mathbb{Z}_{p}^{N}$.
- We denote by $\mathcal{D}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right):=\mathcal{D}_{\mathbb{R}}^{\prime}$ the \mathbb{R}-vector space of all test functions of the form $\varphi(x)=\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right), \varphi(\mathbf{i}) \in \mathbb{R}$, where \mathbf{i} runs through a fixed system of representatives of G_{l}, and $\Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)$ is the characteristic function of the ball $\mathbf{i}+p^{\prime} \mathbb{Z}_{p}^{N}$.

Discretization of Energy Functionals

- A discretization is obtained by considering truncations of p-adic numbers of the form
$a_{-I} p^{-I}+a_{-I+1} p^{-I+1}+\ldots+a_{0}+\ldots+a_{l-1} p^{I-1}$, for some $I \geq 1$, i.e. elements from $G_{l}:=p^{-I} \mathbb{Z}_{p}^{N} / p^{\prime} \mathbb{Z}_{p}^{N}$.
- We denote by $\mathcal{D}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right):=\mathcal{D}_{\mathbb{R}}^{\prime}$ the \mathbb{R}-vector space of all test functions of the form $\varphi(x)=\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right), \varphi(\mathbf{i}) \in \mathbb{R}$, where \mathbf{i} runs through a fixed system of representatives of G_{l}, and $\Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)$ is the characteristic function of the ball $\mathbf{i}+p^{\prime} \mathbb{Z}_{p}^{N}$.
- Notice that φ is supported on ${p^{-I}}_{\mathbb{Z}_{p}^{N}}$ and that $\mathcal{D}_{\mathbb{R}}^{\prime}$ is a finite dimensional vector space spanned by the $\operatorname{basis}\left\{\Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)\right\}_{\mathbf{i} \in G_{l}}$. We identify $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$ with the column vector $[\varphi(\mathbf{i})]_{\mathbf{i} \in G_{I}}$.

Discretization of Energy Functionals

- If m is positive integer then $\varphi_{m}^{m}(x)=$

$$
\left\{\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)\right\}^{\top}=\sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right) .
$$

Discretization of Energy Functionals

- If m is positive integer then $\varphi_{m}^{m}(x)=$

$$
\left\{\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)\right\}^{m}=\sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right) .
$$

- The functional $E_{m}^{\prime}(\varphi):=\int_{\mathbb{Q}_{D}^{N}} \varphi^{m}(x) d^{N} x$ for $m \in \mathbb{N} \backslash\{0\}, \varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, discretizes as $E_{m}^{\prime}(\varphi)=p^{-I N} \sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i})$.

Discretization of Energy Functionals

- If m is positive integer then $\varphi_{m}^{m}(x)=$

$$
\left\{\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)\right\}^{m}=\sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right) \text {. }
$$

- The functional $E_{m}^{\prime}(\varphi):=\int_{\mathbb{Q}_{p}^{N}} \varphi^{m}(x) d^{N} x$ for $m \in \mathbb{N} \backslash\{0\}, \varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, discretizes as $E_{m}^{\prime}(\varphi)=p^{-/ N} \sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i})$.
- $E_{0}(\varphi):=\frac{\gamma}{4} \iint_{\mathbb{Q}_{p}^{N} \times \mathbb{Q}_{p}^{N}} \frac{\{\varphi(x)-\varphi(y)\}^{2}}{w_{\delta}\left(\|x-y\|_{p}\right)} d^{N} x d^{N} y+\frac{\alpha_{2}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x \geq 0$.

Discretization of Energy Functionals

- If m is positive integer then $\varphi_{m}^{m}(x)=$

$$
\left\{\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)\right\}^{m}=\sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right) .
$$

- The functional $E_{m}^{\prime}(\varphi):=\int_{\mathbb{Q}_{p}^{N}} \varphi^{m}(x) d^{N} x$ for $m \in \mathbb{N} \backslash\{0\}, \varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, discretizes as $E_{m}^{\prime}(\varphi)=p^{-I N} \sum_{\mathbf{i} \in G_{l}} \varphi^{m}(\mathbf{i})$.
- $E_{0}(\varphi):=\frac{\gamma}{4} \iint_{\mathbb{Q}_{p}^{N} \times \mathbb{Q}_{p}^{N}} \frac{\{\varphi(x)-\varphi(y)\}^{2}}{w_{\delta}\left(\|x-y\|_{p}\right)} d^{N} x d^{N} y+\frac{\alpha_{2}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x \geq 0$.
- The restriction of E_{0} to $\mathcal{D}_{\mathbb{R}}^{\prime}$ (denoted as $E_{0}^{(/)}$) provides a natural discretization of E_{0}.

Discretization of Energy Functionals

We set $U(I):=U=\left[U_{\mathrm{i}, \mathrm{j}}(I)\right]_{\mathrm{i}, \mathrm{j} \in G^{\prime}}$, where

$$
\begin{gathered}
U_{\mathbf{i}, \mathbf{j}}(I):=\left(\frac{\gamma}{2} d\left(I, w_{\delta}\right)+\frac{\alpha_{2}}{2}\right) \delta_{\mathbf{i}, \mathbf{j}}-\frac{\gamma}{2} A_{\mathbf{i}, \mathbf{j}}(I), \\
d\left(I, w_{\delta}\right):=\int_{\mathrm{Q}_{p}^{N} \backslash B_{-1}^{N}} \frac{d^{N} y}{w_{\delta}\left(\|y\|_{p}\right)} \text { and } A_{\mathbf{i}, \mathbf{j}}(I):= \begin{cases}\frac{p^{-I N}}{w_{\delta}\left(\|\mathbf{i}-\mathbf{j}\|_{p}\right)} & \text { if } \mathbf{i} \neq \mathbf{j} \\
0 & \text { if } \mathbf{i}=\mathbf{j} .\end{cases}
\end{gathered}
$$

Lemma

With the above notation the following formula holds true:
$E_{0}^{(I)}(\varphi)=[\varphi(\mathbf{i})]_{\mathbf{i} \in G_{l}}^{T} p^{-I N} U(I)[\varphi(\mathbf{i})]_{\mathbf{i} \in G_{l}}=\sum_{\mathbf{i}, \mathbf{j} \in G_{l}} p^{-I N} U_{\mathbf{i}, \mathbf{j}}(I) \varphi(\mathbf{i}) \varphi(\mathbf{j}) \geq 0$,
for $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, where U is a symmetric, positive definite matrix.
Consequently $p^{-I N} U(I)$ is a diagonalizable and invertible matrix.

Lizorkin spaces of second kind

The p-adic Lizorkin space of second kind;

$$
\mathcal{L}:=\mathcal{L}\left(\mathbb{Q}_{p}^{N}\right)=\left\{\varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{N}\right) ; \int_{\mathbb{Q}_{p}^{N}} \varphi(x) d^{N} x=0\right\}
$$

$\mathcal{L}_{\mathbb{R}}:=\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)=\mathcal{L}\left(\mathbb{Q}_{p}^{N}\right) \cap \mathcal{D}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$, the real version.

$$
\mathcal{F} \mathcal{L}:=\mathcal{F} \mathcal{L}\left(\mathbb{Q}_{p}^{N}\right)=\left\{\widehat{\varphi} \in \mathcal{D}\left(\mathbb{Q}_{p}^{N}\right) ; \widehat{\varphi}(0)=0\right\}
$$

The Fourier transform gives rise to an isomorphism of \mathbb{C}-vector spaces from \mathcal{L} into $\mathcal{F} \mathcal{L}$.

The topological dual $\mathcal{L}^{\prime}:=\mathcal{L}^{\prime}\left(Q_{p}^{N}\right)$ of the space \mathcal{L} is called the p-adic Lizorkin space of distributions of second kind. The real version is denoted as $\mathcal{L}_{\mathbb{R}}^{\prime}:=\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)$.

Lizorkin spaces of second kind

The discrete p-adic Lizorkin space of second kind:

$$
\begin{aligned}
& \quad \mathcal{L}^{\prime}:=\mathcal{L}^{\prime}\left(\mathbb{Q}_{p}^{N}\right) \\
& =\left\{\varphi(x)=\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right), \varphi(\mathbf{i}) \in \mathbb{C} ; p^{-I N} \sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i})=0\right\} \\
& I \in \mathbb{N} \backslash\{0\} . \text { The real version } \mathcal{L}_{\mathbb{R}}^{\prime}:=\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)=\mathcal{L}^{\prime} \cap \mathcal{D}_{\mathbb{R}}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F} \mathcal{L}^{\prime}:= & \mathcal{F} \mathcal{L}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)= \\
& \left\{\widehat{\varphi}(\kappa)=\sum_{\mathbf{i} \in G_{l}} \widehat{\varphi}(\mathbf{i}) \Omega\left(p^{\prime}\|\kappa-\mathbf{i}\|_{p}\right), \widehat{\varphi}(\mathbf{i}) \in \mathbb{C} ; \widehat{\varphi}(\mathbf{0})=0\right\}
\end{aligned}
$$

The Fourier transform $\mathcal{F}: \mathcal{L}^{\prime} \rightarrow \mathcal{F} \mathcal{L}^{\prime}$ is an automorphism of \mathbb{C}-vector spaces.

Energy functionals in the momenta space

$$
\begin{aligned}
E_{0}(\varphi) & =\frac{\gamma}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi(x)\left(-\mathbf{W}_{\delta}\right) \varphi(x) d^{N} x+\frac{\alpha_{2}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x \\
& =\frac{\gamma}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi(x) \mathbf{W}(\partial, \delta) \varphi(x) d^{N} x+\frac{\alpha_{2}}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x \\
& =\int_{\mathbb{Q}_{p}^{N}}\left(\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{p}\right)+\frac{\alpha_{2}}{2}\right)|\widehat{\varphi}(\kappa)|^{2} d^{N} \mathcal{\kappa} .
\end{aligned}
$$

For $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$, we have

$$
\begin{aligned}
E_{0}(\varphi) & =p^{-I N} \sum_{\mathbf{j} \in G_{\Lambda} \backslash\{\mathbf{0}\}}\left(\frac{\gamma}{2} A_{w_{\delta}}\left(\|\mathbf{j}\|_{p}\right)+\frac{\alpha_{2}}{2}\right)|\widehat{\varphi}(\mathbf{j})|^{2} \\
& +|\widehat{\varphi}(\mathbf{0})|^{2}\left\{\int_{p^{\prime} \mathbb{Z}_{\rho}^{N}}\left(\frac{\gamma}{2} A_{w_{\delta}}\left(\|z\|_{p}\right)+\frac{\alpha_{2}}{2}\right) d^{N} z\right\},
\end{aligned}
$$

where $\widehat{\varphi}(\mathbf{j})=\widehat{\varphi}_{1}(\mathbf{j})+\sqrt{-1} \widehat{\varphi}_{2}(\mathbf{j}) \in \mathbb{C}$.

Energy functionals in the momenta space

We use the alternative notation $\widehat{\varphi_{1}}(\mathbf{j})=\operatorname{Re}(\widehat{\varphi}(\mathbf{j})), \widehat{\varphi}_{2}(\mathbf{j})=\operatorname{Im}(\widehat{\varphi}(\mathbf{j}))$. Notice that

$$
\begin{aligned}
\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime} & = \\
\{\widehat{\varphi}(\kappa) & =\sum_{i \in G_{l}} \widehat{\varphi}(\mathbf{i}) \Omega\left(p^{\prime}\|\kappa-\mathbf{i}\|_{p}\right), \widehat{\varphi}(\mathbf{i}) \in \mathbb{C} ; \widehat{\varphi}(0)=0, \overline{\hat{\varphi}(\kappa)}=\widehat{\varphi}(-\kappa)
\end{aligned}
$$

and that the condition $\overline{\hat{\varphi}(\kappa)}=\widehat{\varphi}(-\kappa)$ implies that $\widehat{\varphi}_{1}(-\mathbf{i})=\widehat{\varphi}_{1}(\mathbf{i})$ and $\widehat{\varphi}_{2}(-\mathbf{i})=-\widehat{\varphi}_{2}(\mathbf{i})$ for any $\mathbf{i} \in G_{l}$. This implies that $\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}$ is \mathbb{R}-vector space of dimension $\# G_{l}-1$.

$$
E_{0}^{(I)}(\varphi)=2 p^{-I N} \sum_{r \in\{1,2\}} \sum_{\mathbf{j} \in G_{l}^{+}}\left(\frac{\gamma}{2} A_{w_{\delta}}\left(\|j\|_{p}\right)+\frac{\alpha_{2}}{2}\right) \widehat{\varphi}_{r}^{2}(\mathbf{j}) .
$$

Energy functionals in the momenta space

We now define the diagonal matrix $B^{(r)}=\left[B_{\mathrm{i}, \mathbf{j}}^{(r)}\right]_{\mathrm{i}, \mathrm{j} \in G_{1}^{+}}, r=1$, 2, where

$$
B_{\mathrm{i}, \mathbf{j}}^{(r)}:= \begin{cases}\frac{\gamma}{2} A_{w_{\delta}}\left(\|\mathbf{j}\|_{p}\right)+\frac{\alpha_{2}}{2} & \text { if } \mathbf{i}=\mathbf{j} \\ 0 & \text { if } \mathbf{i} \neq \mathbf{j}\end{cases}
$$

Notice that $B_{i, j}^{(1)}=B_{i, j}^{(2)}$.
We set

$$
B(I):=B\left(I, \delta, \gamma, \alpha_{2}\right)=\left[\begin{array}{ll}
B^{(1)} & \mathbf{0} \\
\mathbf{0} & B^{(2)} .
\end{array}\right]
$$

The matrix $B=\left[B_{\mathrm{i}, \mathrm{j}}\right]$ is a diagonal of size $2\left(\# G_{l}^{+}\right) \times 2\left(\# G_{l}^{+}\right)$. In addition, the indices \mathbf{i}, \mathbf{j} run through two disjoint copies of G_{l}^{+}.

Energy functionals in the momenta space

Lemma

Assume that $\alpha_{2}>0$. With the above notation the following formula holds true:

$$
\begin{aligned}
E_{0}^{(I)}(\varphi):=E_{0}^{(I)} & \left(\widehat{\varphi_{1}}(\mathbf{j}), \widehat{\varphi_{2}}(\mathbf{j}) ; \mathbf{j} \in G_{I}^{+}\right) \\
& =\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}}
\end{array}\right]^{T} 2 p^{-I N} B(I)\left[\begin{array}{l}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{I}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{I}^{+}}}
\end{array}\right] \geq 0,
\end{aligned}
$$

for $\varphi \in \mathcal{L}_{\mathbb{R}}^{\prime} \simeq \mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime} \simeq \mathbb{R}^{\left(\# G_{l}-1\right)}$, where $2 p^{-I N} B(I)$ is a diagonal, positive definite, invertible matrix.

Gaussian measures

Gaussian measures

$$
\mathcal{Z}:=\mathcal{Z}\left(\delta, \gamma, \alpha_{2}\right)=\int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{\rho}^{N}\right)} D(\varphi) e^{-E_{0}(\varphi)}
$$

We set

$$
\begin{gathered}
\mathcal{Z}^{(I)}=\mathcal{Z}^{(I)}\left(\delta, \gamma, \alpha_{2}\right)=\int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}\left(Q_{p}^{N}\right)} D_{l}(\varphi) e^{-E_{0}(\varphi)} \\
=: \mathcal{N}_{I} \int_{\mathbb{R}^{\left(p^{2 / N}-1\right)}} \exp \left(-\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}}
\end{array}\right]^{T} 2 p^{-I N} B(I)\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}}
\end{array}\right]\right) \\
\\
\times \prod_{\mathbf{i} \in G_{I}^{+}} d \widehat{\varphi_{1}}(\mathbf{i}) d \widehat{\varphi_{2}}(\mathbf{i}),
\end{gathered}
$$

where \mathcal{N}_{l} is a normalization constant, and $\prod_{\mathbf{i} \in G_{1}^{+}} d \widehat{\varphi_{1}}(\mathbf{i}) d \widehat{\varphi_{2}}(\mathbf{i})$ is the Lebesgue measure of $\mathbb{R}^{\left(p^{2 N}-1\right)}$.

Gaussian measures

$\mathcal{Z}^{(I)}$ is a Gaussian integral, then

$$
\mathcal{Z}^{(I)}=\mathcal{N}_{l} \frac{(2 \pi)^{\frac{\left(\rho^{2 / N}-1\right)}{2}}}{\sqrt{\operatorname{det} 4 p^{-1 N} B(I)}}=\mathcal{N}_{l}\left(\frac{\pi}{2}\right)^{\frac{\left(\rho^{2 N}-1\right)}{2}} \frac{p^{\frac{\operatorname{NN}\left(\rho^{2 / N}-1\right)}{2}}}{\sqrt{\operatorname{det} B}} .
$$

We set

$$
\mathcal{N}_{1}=\frac{\left(\frac{2}{\pi}\right)^{\frac{\left(p^{2 / N}-1\right)}{2}} \sqrt{\operatorname{det} B}}{p^{\frac{\operatorname{lN}\left(\rho^{2 / N}-1\right)}{2}}}
$$

Gaussian measures

We define the following family of Gaussian measures:

$$
\begin{gathered}
d \mathbb{P}_{I}\left(\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}}
\end{array}\right]\right) \\
=\mathcal{N}_{I} \exp \left(-\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{I}^{+}}}
\end{array}\right]^{T} 2 p^{-I N} B(I)\left[\begin{array}{l}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{I}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G+I}}
\end{array}\right]\right) \\
\times \prod_{\mathbf{i} \in G_{I}^{+}} d \widehat{\widehat{\varphi}_{1}}(\mathbf{i}) d \widehat{\hat{\varphi}_{2}}(\mathbf{i})
\end{gathered}
$$

in $\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime} \simeq \mathbb{R}^{\left(p^{2 / N}-1\right)}$, for $I \in \mathbb{N} \backslash\{0\}$.

Gaussian measures

Thus for any Borel subset A of $\mathbb{R}^{\left(p^{2 / N}-1\right)} \simeq \mathcal{F} \mathcal{L}_{\mathbb{R}}^{l}$ and any continuous and bounded function $f: \mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime} \rightarrow \mathbb{R}$ the integral

$$
\int_{A} f\left(\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}}
\end{array}\right]\right) d \mathbb{P}_{I}\left(\left[\begin{array}{c}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}}
\end{array}\right]\right)=: \int_{A} f(\widehat{\varphi}) d \mathbb{P}_{l}(\widehat{\varphi})
$$

is well-defined.

Gaussian measures

Lemma

There exists a probability measure space $(X, \mathcal{F}, \mathbb{P})$ and random variables

$$
\left[\begin{array}{l}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}}
\end{array}\right], \text {for } l \in \mathbb{N} \backslash\{0\}
$$

such that $\mathbb{P}_{/}$is the joint probability distribution of $\left[\begin{array}{c}{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\ {\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}}\end{array}\right]$. The space $(X, \mathcal{F}, \mathbb{P})$ is unique up to isomorphisms of probability measure spaces. Furthermore, for any bounded continuous function f supported in $\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}$, we have

$$
\int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}} f(\widehat{\varphi}) d \mathbb{P}_{/}(\widehat{\varphi})=\int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}} f(\widehat{\varphi}) d \mathbb{P}(\widehat{\varphi}) .
$$

Gaussian measures

For $\delta>N, \gamma, \alpha_{2}>0$, we define the operator

$$
\begin{aligned}
\mathcal{D}\left(\mathbb{Q}_{p}^{N}\right) & \rightarrow L^{2}\left(\mathbb{Q}_{p}^{N}\right) \\
\varphi & \rightarrow\left(\frac{\gamma}{2} \mathbf{W}(\partial, \delta)+\frac{\alpha_{2}}{2}\right)^{-1} \varphi
\end{aligned}
$$

where $\left(\frac{\gamma}{2} \mathbf{W}(\partial, \delta)+\frac{\alpha_{2}}{2}\right)^{-1} \varphi(x):=\mathcal{F}_{\kappa \rightarrow X}^{-1}\left(\frac{\mathcal{F}_{x \rightarrow \kappa} \varphi}{\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{\rho}\right)+\frac{\alpha_{2}}{2}}\right)$.

Gaussian measures

We define the distribution

$$
G(x):=G\left(x ; \delta, \gamma, \alpha_{2}\right)=\mathcal{F}_{\kappa \rightarrow x}^{-1}\left(\frac{1}{\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{p}\right)+\frac{\alpha_{2}}{2}}\right) \in \mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)
$$

By using the fact that $\frac{1}{\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{p}\right)+\frac{\alpha_{2}}{2}}$ is radial and $(\mathcal{F}(\mathcal{F} \varphi))(\kappa)=\varphi(-\kappa)$ one verifies that

$$
G(x) \in \mathcal{D}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)
$$

Gaussian measures

$$
\begin{aligned}
\mathbb{B}: \mathcal{D}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) \times \mathcal{D}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) & \rightarrow \mathbb{R} \\
(\varphi, \theta) & \rightarrow\left\langle\varphi,\left(\frac{\gamma}{2} \mathbf{W}(\partial, \delta)+\frac{\alpha_{2}}{2}\right)^{-1} \theta\right\rangle
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ denotes the scalar product in $L^{2}\left(\mathbb{Q}_{p}^{N}\right)$.

Lemma

\mathbb{B} is a positive, continuous bilinear form from $\mathcal{D}_{\mathbb{R}}\left(Q_{p}^{N}\right) \times \mathcal{D}_{\mathbb{R}}\left(Q_{p}^{N}\right)$ into \mathbb{R}.

Lemma

For $\varphi \in \mathcal{L}_{\mathbb{R}}^{\prime} \simeq \mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}$,

$$
\mathbb{B}_{l}(\varphi, \varphi):=\mathbb{B}(\varphi, \varphi)=\left[\begin{array}{l}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{1}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}}
\end{array}\right]^{T} 2 p^{-I N} B^{-1}(I)\left[\begin{array}{l}
{\left[\widehat{\varphi_{1}}(\mathbf{j})\right]_{\mathbf{j} \in G_{I}^{+}}} \\
{\left[\widehat{\varphi_{2}}(\mathbf{j})\right]_{\mathbf{j} \in G_{l}^{+}}}
\end{array}\right]
$$

Gaussian measures

Corollary

The collection $\left\{\mathbb{B}_{\mathcal{Y}} ; \mathcal{Y}\right.$ finite dimensional subspace of $\left.\mathcal{L}_{\mathbb{R}}\right\}$ is completely determined by the collection $\left\{\mathbb{B}_{l} ; l \in \mathbb{N} \backslash\{0\}\right\}$. In the sense that given any $\mathbb{B}_{\mathcal{Y}}$ there is an integer I and a subset $J \subset G_{I}^{+}$, the case $J=\varnothing$ is included, such that $\mathbb{B}_{\mathcal{Y}}=\left.\mathbb{B}_{/}\right|_{\left\{\hat{\varphi}_{1}(\mathbf{j})=0, \widehat{\varphi}_{2}(\mathbf{j})=0 ; \mathbf{j} \neq J\right\}}$.

Gaussian measures in the non-Archimedean framework

The spaces

$$
\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) \hookrightarrow L_{\mathbb{R}}^{2}\left(\mathbb{Q}_{p}^{N}\right) \hookrightarrow \mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)
$$

form a Gel'fand triple, that is, $\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$ is a nuclear space which is densely and continuously embedded in $L_{\mathbb{R}}^{2}$ and $\|g\|_{2}^{2}=\langle g, g\rangle$ for $g \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$.

The mapping

$$
\begin{array}{rllc}
\mathcal{C}: \quad \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) & \rightarrow & \mathbb{C} \\
f & \rightarrow & e^{-\frac{1}{2} \mathbb{B}(f, f)}
\end{array}
$$

defines a characteristic functional, i.e. \mathcal{C} is continuous, positive definite and $\mathcal{C}(0)=1$.

Gaussian measures in the non-Archimedean framework

By the Bochner-Minlos theorem, there exists a probability measure $\mathbb{P}:=\mathbb{P}\left(\delta, \gamma, \alpha_{2}\right)$ called the canonical Gaussian measure on $\left(\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right), \mathcal{B}\right)$, given by its characteristic functional as

$$
\begin{equation*}
\int_{\mathcal{V}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{n}^{N}\right)} e^{\sqrt{-1}\langle W, f\rangle} d \mathbb{P}(W)=e^{-\frac{1}{2} \mathbb{B}(f, f)}, \quad f \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) \tag{2}
\end{equation*}
$$

Gaussian measures in the non-Archimedean framework

The measure \mathbb{P} is uniquely determined by the family of Gaussian measures

$$
\left\{\mathbb{P}_{y} ; \mathcal{Y} \subset \mathcal{L}_{\mathbb{R}}, \text { finite dimensional space }\right\}
$$

where

$$
\mathbb{P}_{y}(A)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{A} e^{-\frac{1}{2} \mathbb{B}(\psi, \psi)} d \psi
$$

if \mathcal{Y} has dimension n.
Equivalently, \mathbb{P} is uniquely determined by the family of bilinear forms

$$
\left\{\mathbb{B}_{\mathcal{Y}} ; \mathcal{Y} \subset \mathcal{L}_{\mathbb{R}}, \text { finite dimensional space }\right\}
$$

where $\mathbb{B}_{\mathcal{Y}}$ denotes the restriction of the scalar product to \mathbb{B} to \mathcal{Y}.
Equivalently, \mathbb{P} is uniquely determined by the family of bilinear forms $\left\{\mathbb{B}_{l} ; I \in \mathbb{N} \backslash\{0\}\right\}$.

Gaussian measures in the non-Archimedean framework

Theorem

Assume that $\delta>N, \gamma>0, \alpha_{2}>0$. (i) The cylinder probability measure
$\mathbb{P}=\mathbb{P}\left(\delta, \gamma, \alpha_{2}\right)$ is uniquely determined by the sequence
$\mathbb{P}_{I}=\mathbb{P}_{I}\left(\delta, \gamma, \alpha_{2}\right), I \in \mathbb{N} \backslash\{0\}$, of Gaussian measures. (ii) Let
$f: \mathcal{F} \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right) \rightarrow \mathbb{R}$ be a continuous and bounded function. Then

$$
\lim _{I \rightarrow \infty} \int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathrm{Q}_{D}^{N}\right)} f(\widehat{\varphi}) d \mathbb{P} /(\widehat{\varphi})=\int_{\mathcal{F} \mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{D}^{N}\right)} f(\widehat{\varphi}) d \mathbb{P}(\widehat{\varphi}) .
$$

The sequence of discretizations $E_{0}^{(I)}$ determines a probability measure P in $L_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)$.

Partition functions and generating functionals

Partition functions

- We consider interactions of the form:
$\mathcal{P}(X)=a_{3} X^{3}+a_{4} X^{4}+\ldots+a_{2 k} X^{2 D} \in \mathbb{R}[X]$, with $D \geq 2$, satisfying $\mathcal{P}(\alpha) \geq 0$ for any $\alpha \in \mathbb{R}$. Which implies that $\exp \left(-\frac{\alpha_{4}}{2} \int \mathcal{P}(\varphi) d^{N} x\right) \leq 1$.

Partition functions

- We consider interactions of the form:
$\mathcal{P}(X)=a_{3} X^{3}+a_{4} X^{4}+\ldots+a_{2 k} X^{2 D} \in \mathbb{R}[X]$, with $D \geq 2$, satisfying $\mathcal{P}(\alpha) \geq 0$ for any $\alpha \in \mathbb{R}$. Which implies that $\exp \left(-\frac{\alpha_{4}}{2} \int \mathcal{P}(\varphi) d^{N} x\right) \leq 1$.
- Each of these theories corresponds to a thermally fluctuating field which is defined by means of a functional integral representation of the partition function.

Partition functions

- We consider interactions of the form:
$\mathcal{P}(X)=a_{3} X^{3}+a_{4} X^{4}+\ldots+a_{2 k} X^{2 D} \in \mathbb{R}[X]$, with $D \geq 2$, satisfying $\mathcal{P}(\alpha) \geq 0$ for any $\alpha \in \mathbb{R}$. Which implies that $\exp \left(-\frac{\alpha_{4}}{2} \int \mathcal{P}(\varphi) d^{N} x\right) \leq 1$.
- Each of these theories corresponds to a thermally fluctuating field which is defined by means of a functional integral representation of the partition function.
- All the thermodynamic quantities and correlation functions of the system can be obtained by functional differentiation from a generating functional as in the classical case.

Partition functions

We assume that $\varphi \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$ represents a field that performs thermal fluctuations. We also assume that in the normal phase the expectation value of the field φ is zero. Then the fluctuations take place around zero.

The size of these fluctuations is controlled by the energy functional:

$$
E(\varphi):=E_{0}(\varphi)+E_{\text {int }}(\varphi)
$$

where

$$
E_{\text {int }}(\varphi):=\frac{\alpha_{4}}{4} \int_{\mathbb{Q}_{\rho}^{N}} \mathcal{P}(\varphi(x)) d^{N} x, \quad \alpha_{4} \geq 0
$$

corresponds to the interaction energy.

Partition functions

Definition

Assume that $\delta>N$, and $\gamma, \alpha_{2}>0$. The free-partition function is defined as

$$
\mathcal{Z}_{0}=\mathcal{Z}_{0}\left(\delta, \gamma, \alpha_{2}\right)=\int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{\rho}^{N}\right)} d \mathbb{P}(\varphi)
$$

The discrete free-partition function is defined as

$$
\mathcal{Z}_{0}^{(I)}=\mathcal{Z}_{0}^{(I)}\left(\delta, \gamma, \alpha_{2}\right)=\int_{\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathrm{Q}_{p}^{N}\right)} d \mathbb{P}_{l}(\varphi)
$$

for $I \in \mathbb{N} \backslash\{0\}$.
$\lim _{l \rightarrow \infty} \mathcal{Z}_{0}^{(I)}=\mathcal{Z}_{0}$. Notice that the term $e^{-E_{0}(\varphi)}$ is used to construct the measure $\mathbb{P}(\varphi)$.

Partition functions

Definition

Assume that $\delta>N$, and $\gamma, \alpha_{2}, \alpha_{4}>0$. The partition function is defined as

$$
\mathcal{Z}=\mathcal{Z}\left(\delta, \gamma, \alpha_{2}, \alpha_{4}\right)=\int_{\mathcal{L}_{\mathbb{R}}\left(Q_{D}^{N}\right)} e^{-E_{\text {int }}(\varphi)} d \mathbb{P}(\varphi)
$$

The discrete partition functions are defined as

$$
\mathcal{Z}^{(I)}=\mathcal{Z}^{(I)}\left(\delta, \gamma, \alpha_{2}, \alpha_{4}\right)=\int_{\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathrm{Q}_{p}^{N}\right)} e^{-E_{\mathrm{int}}(\varphi)} d \mathbb{P}_{/}(\varphi),
$$

for $I \in \mathbb{N} \backslash\{0\}$.

Partition functions

From a mathematical perspective a $\mathcal{P}(\varphi)$-theory is given by a cylinder probability measure of the form

$$
\begin{equation*}
\frac{1_{\mathcal{L}_{\mathbb{R}}}(\varphi) e^{-E_{\text {int }}(\varphi)} d \mathbb{P}}{\int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{p}^{N}\right)} e^{-E_{\text {int }}(\varphi)} d \mathbb{P}}=\frac{1_{\mathcal{L}_{\mathbb{R}}}(\varphi) e^{-E_{\text {int }}(\varphi)} d \mathbb{P}}{\mathcal{Z}} \tag{3}
\end{equation*}
$$

in the space of fields $\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$. It is important to mention that we do not require the Wick regularization operation in $e^{-E_{\text {int }}(\varphi)}$ because we are restricting the fields to be test functions

Partition functions

The m-point correlation functions of a field $\varphi \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$ are defined as

$$
G^{(m)}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{\mathcal{Z}} \int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{p}^{N}\right)}\left(\prod_{i=1}^{m} \varphi\left(x_{i}\right)\right) e^{-E_{\text {int }}(\varphi)} d \mathbb{P} .
$$

The discrete m-point correlation functions of a field $\varphi \in \mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)$ are defined as

$$
G_{l}^{(m)}\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{\mathcal{Z}^{(l)}} \int_{\mathcal{L}_{\mathbb{R}}^{\prime}\left(Q_{p}^{N}\right)}\left(\prod_{i=1}^{m} \varphi\left(x_{i}\right)\right) e^{-E_{\text {int }}(\varphi)} d \mathbb{P}_{l}
$$

for $I \in \mathbb{N} \backslash\{0\}$.

Generating functionals

We now introduce a current $J(x) \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$ and add to the energy functional $E(\varphi)$ a linear interaction energy of this current with the field $\varphi(x)$,

$$
E_{\text {source }}(\varphi, J):=-\int_{\mathbb{Q}_{\rho}^{N}} \varphi(x) J(x) d^{N} x,
$$

in this way we get a new energy functional

$$
E(\varphi, J):=E(\varphi)+E_{\text {source }}(\varphi, J)
$$

Notice that $E_{\text {source }}(\varphi, J)=-\langle\varphi, J\rangle$, where $\langle\cdot, \cdot\rangle$ denotes the scalar product of $L^{2}\left(\mathbb{Q}_{p}^{N}\right)$.

Generating functionals

Definition

Assume that $\delta>N$, and $\gamma, \alpha_{2}, \alpha_{4}>0$. The partition function corresponding to the energy functional $E(\varphi, J)$ is defined as

$$
\mathcal{Z}\left(J ; \delta, \gamma, \alpha_{2}, \alpha_{4}\right):=\mathcal{Z}(J)=\frac{1}{\mathcal{Z}_{0}} \int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{D}^{N}\right)} e^{-E_{\mathrm{int}}(\varphi)+\langle\varphi, J\rangle} d \mathbb{P},
$$

and the discrete versions

$$
\mathcal{Z}^{(I)}\left(J ; \delta, \gamma, \alpha_{2}, \alpha_{4}\right):=\mathcal{Z}^{(I)}(J)=\frac{1}{\mathcal{Z}_{0}^{(I)}} \int_{\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathrm{Q}_{D}^{N}\right)} e^{-E_{\text {int }}(\varphi)+\langle\varphi, J\rangle} d \mathbb{P}_{l}
$$

for $I \in \mathbb{N} \backslash\{0\}$.

Generating functionals

Definition

For $\theta \in \mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$, the functional derivative $D_{\theta} \mathcal{Z}(J)$ of $\mathcal{Z}(J)$ is defined as

$$
D_{\theta} \mathcal{Z}(J)=\lim _{\epsilon \rightarrow 0} \frac{\mathcal{Z}(J+\epsilon \theta)-\mathcal{Z}(J)}{\epsilon}=\left[\frac{d}{d \epsilon} \mathcal{Z}(J+\epsilon \theta)\right]_{\epsilon=0}
$$

Generating functionals

Lemma

Let $\theta_{1}, \ldots, \theta_{m}$ be test functions from $\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)$. The functional derivative $D_{\theta_{1}} \cdots D_{\theta_{m}} \mathcal{Z}(J)$ exists, and the following formula holds true:

$$
D_{\theta_{1}} \cdots D_{\theta_{m}} \mathcal{Z}(J)=\frac{1}{\mathcal{Z}_{0}} \int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{P}^{N}\right)} e^{-E_{i n t}(\varphi)+\langle\varphi, J\rangle}\left(\prod_{i=1}^{m}\left\langle\varphi, \theta_{i}\right\rangle\right) d \mathbb{P}(\varphi)
$$

Furthermore, the functional derivative $D_{\theta_{1}} \cdots D_{\theta_{m}} \mathcal{Z}(J)$ can be uniquely identified with the distribution from $\mathcal{L}_{\mathbb{R}}^{\prime}\left(\left(\mathbb{Q}_{p}^{N}\right)^{m}\right)$:

$$
\begin{aligned}
\prod_{i=1}^{m} \theta_{i}\left(x_{i}\right) \rightarrow \frac{1}{\mathcal{Z}_{0}} & \int_{\mathbb{Q}_{p}^{N} \times \cdots \times \mathbb{Q}_{p}^{N}} \cdots \prod_{i=1}^{m} \theta_{i}\left(x_{i}\right) \times \\
& \left\{\begin{array}{l}
\left.\int_{\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)} e^{-E_{i n t}(\varphi)+\langle\varphi, J\rangle} \prod_{i=1}^{m} \varphi\left(x_{i}\right) d \mathbb{P}(\varphi)\right\} \prod_{i=1}^{m} d^{N} x_{i} .
\end{array}\right.
\end{aligned}
$$

Generating functionals

In an alternative way, one can define the functional derivative $\frac{\delta}{\delta J(y)} \mathcal{Z}(J)$ of $\mathcal{Z}(J)$ as the distribution from $\mathcal{L}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{N}\right)$ satisfying

$$
\int_{\mathbb{Q}_{p}^{N}} \theta(y)\left(\frac{\delta}{\delta J(y)} \mathcal{Z}(J)\right)(y) d^{N} y=\left[\frac{d}{d \epsilon} \mathcal{Z}(J+\epsilon \theta)\right]_{\epsilon=0}
$$

Using this notation, we obtain that

$$
\begin{aligned}
& \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \\
& \frac{\delta}{\delta J\left(x_{m}\right)} \mathcal{Z}(J)= \\
& \frac{1}{\mathcal{Z}_{0}} \int_{\mathcal{L}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{N}\right)} e^{-E_{\text {int }}(\varphi)+\langle\varphi, J\rangle}\left(\prod_{i=1}^{m} \varphi\left(x_{i}\right)\right) d \mathbb{P}(\varphi) \in \mathcal{L}_{\mathbb{R}}^{\prime}\left(\left(\mathbb{Q}_{p}^{N}\right)^{m}\right) .
\end{aligned}
$$

Generating functionals

Proposition

The correlations functions $G^{(m)}\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{L}_{\mathbb{R}}^{\prime}\left(\left(\mathbb{Q}_{p}^{N}\right)^{m}\right)$ are given by

$$
G^{(m)}\left(x_{1}, \ldots, x_{m}\right)=\left.\frac{\mathcal{Z}_{0}}{\mathcal{Z}} \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{m}\right)} \mathcal{Z}(J)\right|_{J=0}
$$

Free-field theory

We set $\mathcal{Z}_{0}(J):=\mathcal{Z}\left(J ; \delta, \gamma, \alpha_{2}, 0\right)$.

Proposition

$\mathcal{Z}_{0}(J)=\mathcal{N}_{0}^{\prime} \exp \left\{\int_{Q_{p}^{N}} \int_{Q_{p}^{N}} J(x) G\left(\|x-y\|_{p}\right) J(y) d^{N} x d^{N} y\right\}$, where \mathcal{N}_{0}^{\prime} denotes a normalization constant For $J \in \mathcal{L}_{\mathbb{R}}$, the equation

$$
\left(\frac{\gamma}{2} W(\partial, \delta)+\frac{\alpha_{2}}{2}\right) \varphi_{0}=J
$$

has unique solution $\varphi_{0} \in \mathcal{L}_{\mathbb{R}}$. Indeed, $\widehat{\varphi_{0}}(\kappa)=\frac{\hat{J}(\kappa)}{\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{p}\right)+\frac{\alpha_{2}}{2}}$ is a test function satisfying $\widehat{\varphi_{0}}(0)=0$. Furthermore,

$$
\varphi_{0}(x)=\mathcal{F}_{\kappa \rightarrow x}^{-1}\left(\frac{1}{\frac{\gamma}{2} A_{w_{\delta}}\left(\|\kappa\|_{p}\right)+\frac{\alpha_{2}}{2}}\right) * J(x)=G\left(\|x\|_{p}\right) * J(x) \text { in } \mathcal{D}_{\mathbb{R}}^{\prime}
$$

Free-field theory

Proof.

We now change variables in $\mathcal{Z}_{0}(J)$ as $\varphi=\varphi_{0}+\varphi^{\prime}$,

$$
\begin{aligned}
\mathcal{Z}_{0}(J) & =\frac{1}{\mathcal{Z}_{0}} \int_{\mathcal{L}_{\mathbb{R}}\left(Q_{p}^{N}\right)} e^{\langle\varphi, J\rangle} d \mathbb{P}=\frac{e^{\left\langle\varphi_{0}, J\right\rangle}}{\mathcal{Z}_{0}} \int_{\mathcal{L}_{\mathbb{R}}\left(Q_{p}^{N}\right)} e^{\left\langle\varphi^{\prime}, J\right\rangle} d \mathbb{P}^{\prime}\left(\varphi^{\prime}\right) \\
& =\left(\frac{1}{\mathcal{Z}_{0}} \int_{\mathcal{C}_{\mathbb{R}}\left(Q_{p}^{N}\right)} e^{\left\langle\varphi^{\prime},\left(\frac{\gamma}{2} W(\partial, \delta)+\frac{\alpha_{2}}{2}\right) \varphi_{0}\right\rangle} d \mathbb{P}^{\prime}\left(\varphi^{\prime}\right)\right) e^{\langle G * J, J\rangle} \\
& =\mathcal{N}_{0}^{\prime} e^{(G * J, J\rangle}=\mathcal{N}_{0}^{\prime} \exp \left\{\int_{\mathbb{Q}_{p}^{N}} \int_{\mathbb{Q}_{p}^{N}} J(x) G\left(\|x-y\|_{p}\right) J(y) d^{N} \times d^{N} y\right\}
\end{aligned}
$$

Free-field theory

The correlation functions $G_{0}^{(m)}\left(x_{1}, \ldots, x_{m}\right)$ of the free-field theory are obtained from the functional derivatives of $\mathcal{Z}_{0}(J)$ at $J=0$:

Proposition

$$
\begin{gathered}
G_{0}^{(m)}\left(x_{1}, \ldots, x_{m}\right)=\left[\frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{m}\right)} \mathcal{Z}_{0}(J)\right]_{J=0} \\
=\mathcal{N}_{0}^{\prime} \frac{\delta}{\delta J\left(x_{1}\right)} \cdots \frac{\delta}{\delta J\left(x_{m}\right)} \exp \left\{\int_{\mathbb{Q}_{p}^{N}} \int_{\mathbb{Q}_{p}^{N}} J(x) G\left(\|x-y\|_{p}\right) J(y) d^{N} x d^{N} y\right\}
\end{gathered}
$$

Perturbation expansions for phi-4-theories

The existence of a convergent power series expansion for $Z(J)$ (the perturbation expansion) in the coupling parameter α_{4} follows from the fact that $\exp \left(-E_{\text {int }}(\varphi)+\langle\varphi, J\rangle\right)$ is an integrable function, by using the dominated convergence theorem, more precisely, we have

$$
\begin{gathered}
\mathcal{Z}(J)=\mathcal{Z}_{0}(J)+ \\
\frac{1}{\mathcal{Z}_{0}} \sum_{m=1}^{\infty} \frac{1}{m!}\left(\frac{-\alpha_{4}}{4}\right)^{m} \int_{\mathcal{L}_{\mathbb{R}}\left(\mathrm{Q}_{D}^{N}\right)}\left\{\int_{\left(\mathrm{Q}_{\rho}^{N}\right)^{m}}\left(\prod_{i=1}^{m} \varphi^{4}\left(z_{i}\right)\right) e^{\langle\varphi, J\rangle} \prod_{i=1}^{m} d^{N} z_{i}\right\} d \mathbb{P}(\varphi) \\
=: \mathcal{Z}_{0}(J)+\sum_{m=1}^{\infty} \mathcal{Z}_{m}(J)
\end{gathered}
$$

Perturbation expansions for phi-4-theories

Theorem

Assume that $\mathcal{P}(\varphi)=\varphi^{4}$. The n-point correlation function of the field φ admits the following convergent power series in the coupling constant:

$$
G^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\frac{\mathcal{Z}_{0}}{\mathcal{Z}}\left\{G_{0}^{(n)}\left(x_{1}, \ldots, x_{n}\right)+\sum_{m=1}^{\infty} G_{m}^{(n)}\left(x_{1}, \ldots, x_{n}\right)\right\} .
$$

where

$$
\begin{aligned}
G_{m}^{(n)}\left(x_{1}, \ldots, x_{n}\right): & =\frac{1}{m!}\left(\frac{-\alpha_{4}}{4}\right)^{m} \times \\
& \int_{\left(\mathrm{Q}_{p}^{N}\right)^{m}} G_{0}^{(n+4 m)}\left(z_{1}, z_{1}, z_{1}, z_{1}, \ldots, z_{m}, z_{m}, z_{m}, z_{m}, x_{1}, \ldots, x_{n}\right) \prod_{i=1}^{m} d^{N} z_{i} .
\end{aligned}
$$

Ginzburg-Landau phenomenology

Ginzburg-Landau phenomenology

A non-Archimedean Ginzburg-Landau free energy:

$$
\begin{aligned}
& E(\varphi, J): E\left(\varphi, J ; \delta, \gamma, \alpha_{2}, \alpha_{4}\right)=\frac{\gamma(T)}{2} \int_{\mathbb{Q}_{p}^{N} \times \mathbb{Q}_{p}^{N}} \frac{\{\varphi(x)-\varphi(y)\}^{2}}{w_{\delta}\left(\|x-y\|_{p}\right)} d^{N} x d^{N} y \\
& +\frac{\alpha_{2}(T)}{2} \int_{\mathbb{Q}_{p}^{N}} \varphi^{2}(x) d^{N} x+\frac{\alpha_{4}(T)}{4} \int_{\mathbb{Q}_{p}^{N}} \varphi^{4}(x) d^{N} x-\int_{\mathbb{Q}_{p}^{N}} \varphi(x) J(x) d^{N} x,
\end{aligned}
$$

where $J, \varphi \in \mathcal{D}_{\mathbb{R}}$, and

$$
\begin{aligned}
\gamma(T) & =\gamma+O\left(\left(T-T_{c}\right)\right) ; \quad \alpha_{2}(T)=\left(T-T_{c}\right)+O\left(\left(T-T_{c}\right)^{2}\right) \\
\alpha_{4}(T) & =\alpha_{4}+O\left(\left(T-T_{c}\right)\right),
\end{aligned}
$$

where T is temperature, T_{C} is the critical temperature and $\gamma>0, \alpha_{4}>0$.

\mathbf{Z}_{2} symmetry

If $J=0$, then E is invariant under $\varphi \rightarrow-\varphi$.

Ginzburg-Landau phenomenology

- We consider that $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$ is the local order parameter of a continuous Ising system with 'external magnetic field' $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$.

Ginzburg-Landau phenomenology

- We consider that $\varphi \in \mathcal{D}_{\mathbb{R}}^{l}$ is the local order parameter of a continuous Ising system with 'external magnetic field' $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$.
- The system is contained in the ball B_{l}^{N}. We divide this ball into sub-balls (boxes) $B_{-/}^{N}(\mathbf{i}), \mathbf{i} \in G_{/}$. The volume of each of these balls is $p^{-I N}$ and the radius is $a:=p^{-1}$.

Ginzburg-Landau phenomenology

- We consider that $\varphi \in \mathcal{D}_{\mathbb{R}}^{l}$ is the local order parameter of a continuous Ising system with 'external magnetic field' $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$.
- The system is contained in the ball B_{l}^{N}. We divide this ball into sub-balls (boxes) $B_{-/}^{N}(\mathbf{i}), \mathbf{i} \in G_{l}$. The volume of each of these balls is $p^{-I N}$ and the radius is $a:=p^{-1}$.
- Each $\varphi(\mathbf{i}) \in \mathbb{R}$ represents the 'average magnetization' in the ball $B_{-l}^{N}(\mathbf{i})$. We take $\varphi(x)=\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)$ which is a locally constant function.

Ginzburg-Landau phenomenology

- We consider that $\varphi \in \mathcal{D}_{\mathbb{R}}^{l}$ is the local order parameter of a continuous Ising system with 'external magnetic field' $J \in \mathcal{D}_{\mathbb{R}}^{\prime}$.
- The system is contained in the ball B_{l}^{N}. We divide this ball into sub-balls (boxes) $B_{-/}^{N}(\mathbf{i}), \mathbf{i} \in G_{/}$. The volume of each of these balls is $p^{-I N}$ and the radius is $a:=p^{-I}$.
- Each $\varphi(\mathbf{i}) \in \mathbb{R}$ represents the 'average magnetization' in the ball $B_{-l}^{N}(\mathbf{i})$. We take $\varphi(x)=\sum_{\mathbf{i} \in G_{l}} \varphi(\mathbf{i}) \Omega\left(p^{\prime}\|x-\mathbf{i}\|_{p}\right)$ which is a locally constant function.
- Notice that the distance between two points in the ball $\mathbf{i}+p^{\prime} \mathbb{Z}_{p}^{N}$ is $\leq p^{-1}$. Then $\varphi(x)$ varies appreciable over distances larger than p^{-1}.

Ginzburg-Landau phenomenology

Then considering $\varphi(\mathbf{i}) \in \mathbb{R}$ as the continuous spin at the site $\mathbf{i} \in G_{l}$, the partition function of our continuos Ising model is

$$
\mathcal{Z}^{(I)}(\beta)=\sum_{\left\{\varphi(\mathbf{i}) ; \mathbf{i} \in G_{l}\right\}} e^{-\beta E(\varphi(\mathbf{i}), J(\mathbf{i}))}
$$

Theorem

The minimizers of the functional $E(\varphi, 0), \varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$ are constant solutions of

$$
\begin{equation*}
\left(-\frac{\gamma}{2} \mathbf{W}_{\delta}^{(I)}+\alpha_{2}-\frac{\gamma}{2} \int_{\mathrm{Q}_{p}^{N} \backslash B_{1}^{N}} \frac{d^{N} y}{w_{\delta}\left(\|y\|_{p}\right)}\right) \varphi(x)+\alpha_{4} \varphi^{3}(x)=0 \tag{4}
\end{equation*}
$$

i.e. solutions of

$$
\begin{equation*}
\varphi\left(\alpha_{4} \varphi^{2}+\alpha_{2}\right)=0 \tag{5}
\end{equation*}
$$

Spontaneous symmetry breaking

If $J=0$, the field $\varphi \in \mathcal{D}_{\mathbb{R}}^{\prime}$ is a minimum of the energy functional E, if it satisfies (5). When $T>T_{C}$ we have $\alpha_{2}>0$ and the ground state is $\varphi_{0}=0$. In contrast, when $T<T_{C}, \alpha_{2}<0$, there is a degenerate ground state $\pm \varphi_{0}$ with

$$
\varphi_{0}=\sqrt{-\frac{\alpha_{2}}{\alpha_{4}}}
$$

This implies that below T_{C} the systems must pick one of the two states $+\varphi_{0}$ or $-\varphi_{0}$, which means that there is a spontaneous symmetry breaking.

