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Systems, automata and word maps

Notion: system

A (discrete) system (or, a system with a discrete time
t ∈ N0 = {0, 1, 2, . . .}) is a 5-tuple A = 〈I, S,O,S,O〉 where
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Systems, automata and word maps

Notion: system

A (discrete) system (or, a system with a discrete time
t ∈ N0 = {0, 1, 2, . . .}) is a 5-tuple A = 〈I, S,O,S,O〉 where

I is a non-empty finite set, the input alphabet;

O is a non-empty finite set, the output alphabet;

S is a non-empty (possibly, infinite) set of (epistemic) states;

S: I× S→ S is a state transition function;

O: I× S→ O is an output function.

The system is autonomous if neither Snor O depend on input (that is
S: S→ S, O: S→ O); otherwise the system is non-autonomous.
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Systems, automata and word maps

An (initial) automaton A(s0) is a system where one of the states, s0 ∈ S,
is fixed; it is called the initial state.

si∙ ∙ ∙χi+1χi

S

O

si+1 = S(χi , si)

state transition

input

ξi = O(χi , si) ξiξi−1 ∙ ∙ ∙ ξ0

output
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Systems, automata and word maps

Time t = 0 :

state s0

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χ0 ξ0 = O(χ0, s0)

ξ0 ∈ O— 0-th output symbol

χ0 ∈ I— 0-th input symbol
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Systems, automata and word maps

Time t = 1 :

s1 = S(χ0, s0)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χ1 ξ1 = O(χ1, s1)

ξ1 ∈ O— 1-st output symbol

χ1 ∈ I— 1-st input symbol
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Systems, automata and word maps

Time t = 2 :

s2 = S(χ1, s1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χ2 ξ2 = O(χ2, s2)

ξ2 ∈ O— 2-nd output symbol

χ2 ∈ I— 2-nd input symbol

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 4 / 32



Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol
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Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

The automaton A determines the automaton function fA that
maps words over the alphabet I to words over the alphabet O:
fA : . . . χ2χ1χ0 7→ . . . ξ2ξ1ξ0
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Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

Every output symbol ξi depends only on symbols χ0, . . . , χi ∈ I which
have been already feeded to the automaton: ξi = ϕi(χ0, . . . , χi) ∈ O

Therefore an automaton can be considered as mathematical formalism
for the causality law: (input symbols=causes; output symbols=effects)
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Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

Every output symbol ξi depends only on symbols χ0, . . . , χi ∈ I which
have been already feeded to the automaton: ξi = ϕi(χ0, . . . , χi) ∈ O

The automaton function fA : . . . χ2χ1χ0 7→ . . . ξ2ξ1ξ0 is completely de-
termined by the sequence of maps ϕi : I

i+1→ O, i ∈ N0; and vice versa,
every such sequence of maps determines an automaton function.

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 4 / 32



Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

Every output symbol ξi depends only on symbols χ0, . . . , χi ∈ I which
have been already feeded to the automaton: ξi = ϕi(χ0, . . . , χi) ∈ O

The automaton function maps infinite words (=left-infinite sequences)
over I to infinite words over O.
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Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

Every output symbol ξi depends only on symbols χ0, . . . , χi ∈ I which
have been already feeded to the automaton: ξi = ϕi(χ0, . . . , χi) ∈ O

Take I = O = {0, 1, . . . , p− 1} for a prime p; associate infinite words to
canonical representations of p-adic integers; then the automaton func-
tion is a map Zp → Zp. The map f : Zp → Zp is an automaton function
if and only if it is 1-Lipschitz w.r.t. p-adic metric.
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Systems, automata and word maps

Time t = i :

si = S(χi−1, si−1)

Automaton A = 〈I, S,O,S,O, s0〉: I – input alphabet; O – output
alphabet; S – state set; S: I× S→ S – transition function;
O: I× S→ O – output function; s0 ∈ S – initial state

χi ξi = O(χi , si)

ξi ∈ O— i-th output symbol

χi ∈ I— i-th input symbol

Every output symbol ξi depends only on symbols χ0, . . . , χi ∈ I which
have been already feeded to the automaton: ξi = ϕi(χ0, . . . , χi) ∈ O

The map f : Zp → Zp is an automaton function if and only if it is 1-
Lipschitz w.r.t. p-adic metric. Therefore (univariate) 1-Lipschitz func-
tions can be judged as (univariate) causal functions over discrete time;
i.e., as function which describes temporal evolution of a system.
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Automata maps = causal functions over discrete time
More general model of a (non-autonomous) system which evolves in
time is the case #I = pn, #O = pm where m, n ∈ N = {1, 2, 3, . . .}.
This case corresponds to an automaton having n input words and m
output words over p-symbol alphabet; or, equivalently, to a 1-Lipschitz
map Zn

p→ Zm
p . In other words, we consider a system as a black box and

observe reactions of the system exposed to (long) series of impacts.

Black box

ε
↓
i Φ↓i (ε

↓
0, . . . , ε

↓
i )

m-symbol outputn-symbol input
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Automata maps = causal functions over discrete time
More general model of a (non-autonomous) system which evolves in
time is 1-Lipschitz map Zn

p→ Zm
p . In other words, we consider a system

as a black box and observe reactions of the system exposed to (long)
series of impacts.

Black box
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Automata maps = causal functions over discrete time

Causality=1-Lipschitzness: Every i-th output vector Φ↓i does NOT de-
pend on ‘future input vectors’ ε↓i+1, ε

↓
i+2, . . ., for all i = 0, 1, 2, . . ..

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata (i.e., the ones whose sets of epistemic states are different,
whose state transition functions are different, whose output functions
are different, but) whose automaton function is F.

Therefore external observer can only make guesses about ‘internal
structure’ of the system by observing pairs of ‘causes and effects’, i.e.,
pairs (x,F(x)).
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Automata maps = causal functions over discrete time

Causality=1-Lipschitzness: Every i-th output vector Φ↓i does NOT de-
pend on ‘future input vectors’ ε↓i+1, ε

↓
i+2, . . ., for all i = 0, 1, 2, . . ..

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata (i.e., the ones whose sets of epistemic states are different,
whose state transition functions are different, whose output functions
are different, but) whose automaton function is F.

One of the most important features of the ‘internal structure’ of the sys-
tem which imposes sharp restrictions on the automaton function F is
finiteness of the set of (epistemic) states of the automaton.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

Basically a ‘real-world’ physical system cannot have infinite number of
states; however, the number of states can be too large in comparison
the ‘time elapsed’, i.e., with the length of a finite words the automaton
accepts and produces during observation. Therefore 1-Lipschitz maps
which are not finite automata functions must also be included into con-
siderations.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

Examples

A constant map f : Zp→ Zp is a finite automaton function if and
only if f(x) = const∈ Zp ∩Q for all x ∈ Zp.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

Examples

A constant map f : Zp→ Zp is a finite automaton function if and
only if f(x) = const∈ Zp ∩Q for all x ∈ Zp.

An affine map f : Zp→ Zp, f(x) = ax+ b, (x ∈ Zp) is a finite
automaton function if and only if a, b ∈ Zp ∩Q.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

Examples

A polynomial map f : Zp→ Zp, f(x) ∈ Zp[x], is an automaton
function, but it is never a finite automaton function if degf ≥ 2.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

I Note that the maps defined by polynomials all whose coefficients are
rational p-adic integers (i.e., lie inZp∩Q) are examples of the functions of
our interest: The maps are automata functions (since they are p-adic 1-
Lipschitz); they are continuous real-valued functions of real variable; and
both that functions (real and p-adic) agree on Zp∩Q; all their derivatives
agree as well.
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

I Note that the maps defined by polynomials all whose coefficients are
rational p-adic integers (i.e., lie inZp∩Q) are examples of the functions of
our interest: The maps are automata functions (since they are p-adic 1-
Lipschitz); they are continuous real-valued functions of real variable; and
both that functions (real and p-adic) agree on Zp∩Q; all their derivatives
agree as well.
Are there other functions of that highlighted sort?
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Automata maps = causal functions over discrete time

Given a 1-Lipschitz map F : Zn
p→ Zm

p , there are infinitely many different
automata whose automaton function is F.

Definition (Finite automata function)

A 1-Lipschitz map F : Zn
p→ Zm

p is called a finite automaton function if
there exists an automaton having pn-symbol input alphabet I, a
pm-symbol output alphabet O, a finite set of states S, and whose
automaton function is F.

I Note that the maps defined by polynomials all whose coefficients are
rational p-adic integers (i.e., lie inZp∩Q) are examples of the functions of
our interest: The maps are automata functions (since they are p-adic 1-
Lipschitz); they are continuous real-valued functions of real variable; and
both that functions (real and p-adic) agree on Zp∩Q; all their derivatives
agree as well.
Are there other functions of that highlighted sort? Yes!
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On p-adic 1-Lipschitz continuous real functions
Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
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On p-adic 1-Lipschitz continuous real functions
Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that

f(Zp ∩Q) ⊂ Zp ∩Q
f(z) = f̆(z) for every z∈ Zp ∩Q

The class Cp(R) is the main class we are focused at; further in the talk
we do not differ f̆ from f when it is clear from the context what domain is
considered.
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On p-adic 1-Lipschitz continuous real functions
Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that

f(Zp ∩Q) ⊂ Zp ∩Q
f(z) = f̆(z) for every z∈ Zp ∩Q

The class Cp(R) is the main class we are focused at; further in the talk
we do not differ f̆ from f when it is clear from the context what domain is
considered.

Example

Given polynomials u, v ∈ Z[x] s.t. v(z) 6≡ 0 (mod p) for all z∈ Zp and
v(z) 6= 0 for all z∈ R, the rational function f(x) = u(x)

v(x) is in Cp(R).
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On p-adic 1-Lipschitz continuous real functions
Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that

f(Zp ∩Q) ⊂ Zp ∩Q
f(z) = f̆(z) for every z∈ Zp ∩Q

Example

Given polynomials u, v ∈ Z[x] s.t. v(z) 6≡ 0 (mod p) for all z∈ Zp and
v(z) 6= 0 for all z∈ R, the rational function f(x) = u(x)

v(x) is in Cp(R).

I The rational functions f from the example above are differentiable
both w.r.t. p-adic metric and real metric; moreover, f̆ ′ = f ′ everywhere
on Zp ∩Q and f ′ ∈ Cp(R).
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On p-adic 1-Lipschitz continuous real functions
Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that

f(Zp ∩Q) ⊂ Zp ∩Q
f(z) = f̆(z) for every z∈ Zp ∩Q

Example

Given polynomials u, v ∈ Z[x] s.t. v(z) 6≡ 0 (mod p) for all z∈ Zp and
v(z) 6= 0 for all z∈ R, the rational function f(x) = u(x)

v(x) is in Cp(R).

We denote via Ck
p(R) (resp., via C∞p (R) the sub-class of all k-times (resp.,

infinitely) differentiable (w.r.t. both p-adic and real metric) functions
whose derivatives are also in Cp(R). The functions from the above ex-
ample are all in C∞p (R).
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2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that
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f(z) = f̆(z) for every z∈ Zp ∩Q

Example

Given polynomials u, v ∈ Z[x] s.t. v(z) 6≡ 0 (mod p) for all z∈ Zp and
v(z) 6= 0 for all z∈ R, the rational function f(x) = u(x)

v(x) is in Cp(R).

We denote via Ck
p(R) (resp., via C∞p (R) the sub-class of all k-times (resp.,

infinitely) differentiable (w.r.t. both p-adic and real metric) functions
whose derivatives are also in Cp(R). Are there functions in Ck

p(R)
other than the rational ones?
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Given a prime p, denote via Cp(R) the class of all functions continuous
(w.r.t. to metric on R) real functions f̆ : R→ R which satisfy the following
properties:

1 f̆(Zp ∩Q) ⊂ Zp ∩Q;
2 There exists a p-adic 1-Lipschitz function f : Zp→ Zp such that

f(Zp ∩Q) ⊂ Zp ∩Q
f(z) = f̆(z) for every z∈ Zp ∩Q

Example

Given polynomials u, v ∈ Z[x] s.t. v(z) 6≡ 0 (mod p) for all z∈ Zp and
v(z) 6= 0 for all z∈ R, the rational function f(x) = u(x)

v(x) is in Cp(R).

We denote via Ck
p(R) (resp., via C∞p (R) the sub-class of all k-times (resp.,

infinitely) differentiable (w.r.t. both p-adic and real metric) functions
whose derivatives are also in Cp(R). Are there functions in Ck

p(R)
other than the rational ones? Yes!
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Non-rational functions from Ck
p(R)

Pre-history: Once K. Weierstrass asked D. Hilbert whether there exists
a smooth real function which is not a rational function but which maps
rationals to rationals. The answer was positive, but neither records of
the conversation nor Hilbert’s example are known.
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Non-rational functions from Ck
p(R)

Pre-history: Once K. Weierstrass asked D. Hilbert whether there exists
a smooth real function which is not a rational function but which maps
rationals to rationals. The answer was positive, but neither records of
the conversation nor Hilbert’s example are known.
In 1939, J. W. Green published a paper about functions of that sort;
in 2012 H. Makholm presented another example of (complex) analytic
function which maps rationals to rationals and which is not a rational
function.
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Non-rational functions from Ck
p(R)

Pre-history: Once K. Weierstrass asked D. Hilbert whether there exists
a smooth real function which is not a rational function but which maps
rationals to rationals. The answer was positive, but neither records of
the conversation nor Hilbert’s example are known.
In 1939, J. W. Green published a paper about functions of that sort;
in 2012 H. Makholm presented another example of (complex) analytic
function which maps rationals to rationals and which is not a rational
function.
Relying on ideas from these works, it is possible to construct functions
from Ck

p(R) which are not rational functions.
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Non-rational functions from Ck
p(R)

It is possible to construct functions from Ck
p(R) which are not rational

functions.
I The said functions are complex entire functions of the form

tk(x) =
∞∑

i=1

Ci((q1− x)(q2− x) ∙ ∙ ∙ (qi − x))k+1

where
1 q1, q2, q3, . . . is enumeration of elements of Zp ∩Q by positive

rational integers 1, 2, 3, . . .;
2 Ci are specially constructed rational p-adic integers to ensure the

function tk(x) is entire complex function and are such that the
sequence (Ci)

∞
i=1 converges to 0 both in p-adic metric and in real

metric: All Ci ∈ Zp ∩Q and Ci
Zp
−→
R

0 as i →∞.
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Non-rational functions from Ck
p(R)

It is possible to construct functions from Ck
p(R) which are not rational

functions.
I The said functions are complex entire functions of the form

tk(x) =
∞∑

i=1

Ci((q1− x)(q2− x) ∙ ∙ ∙ (qi − x))k+1

where
1 q1, q2, q3, . . . is enumeration of elements of Zp ∩Q by positive

rational integers 1, 2, 3, . . .;
2 Ci are specially constructed rational p-adic integers to ensure the

function tk(x) is entire complex function and are such that the
sequence (Ci)

∞
i=1 converges to 0 both in p-adic metric and in real

metric: All Ci ∈ Zp ∩Q and Ci
Zp
−→
R

0 as i →∞.

That is a view from the ‘real side’; now we will look from the ‘p-adic
side’.
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Non-rational functions from Ck
p(R)

Firstly recall some facts about p-adic 1-Lipschitz functions.
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Non-rational functions from Ck
p(R)

Firstly recall some facts about p-adic 1-Lipschitz functions.
I A mapping f : Zp→ Zp belongs to the class of all 1-Lipschitz mappings
Zp→ Zp (denoted via Lp) if and only if f can be represented via Mahler
series of the form

f(x) =
∞∑

i=0

aip
blogp ic

(
x
i

)

( ai ∈ Zp; i = 0, 1, 2, . . .)

where (
x
i

)

=
x(x− 1) ∙ ∙ ∙ (x− i + 1)

i!

for i = 1, 2, . . .; (
x
0

)

= 1, blogp 0c = 0

by the definition.
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Non-rational functions from Ck
p(R)

I A mapping f : Zp→ Zp belongs to the class Lp (=is 1-Lipschitz) iff

f(x) =
∞∑

i=0

aip
blogp ic

(
x
i

)

(here ai ∈ Zp; i = 0, 1, 2, . . .)

I Functions defined by power series over Zp

s(x) =
∞∑

i=0

cix
i (where ci ∈ Zp; i = 0, 1, 2 . . . ; ),

that converge everywhere on Zp (i.e., s.t.
p

lim
i→∞

ci = 0) constitute a sub-

class (denoted via C) of Lp.
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Non-rational functions from Ck
p(R)

I A mapping f : Zp→ Zp belongs to the class Lp (=is 1-Lipschitz) iff

f(x) =
∞∑

i=0

aip
blogp ic

(
x
i

)

(here ai ∈ Zp; i = 0, 1, 2, . . .)

I Following functions constitute a subclass C ⊂ Lp

s(x) =
∞∑

i=0

cix
i (where ci ∈ Zp; i = 0, 1, 2 . . . ;

p
lim

i→∞
ci = 0),

.
I Following functions constitute a subclass B ⊂ Lp s.t. B ⊃ C:

g(x) =
∞∑

i=0

bi

(
x
i

)

(here bi ∈ Zp are s.t.
bi

i!
∈ Zp; i = 0, 1, 2, . . .)
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Non-rational functions from Ck
p(R)

C =

{

s(x) =
∞∑

i=0

cix
i : ci ∈ Zp; i = 0, 1, 2 . . . ;

p
lim

i→∞
ci = 0

}

,

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

The class B is endowed with the non-Archimedean metric Dp(u, v) =
max{|u(z)− v(z)|p : z∈ Zp}.

Theorem (V. A., 2002)

The class B is a complete (w.r.t. Dp) metric space; it consists of
C∞(Zp)-functions and is closed w.r.t. additions, multiplications,
derivations, and compositions of functions; Z[x] is dense in B.

The notion of Ck-functions is used in standard meaning; we write Ck(Zp)
(resp., Ck(R)) to emphasize what derivatives are meant.
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

Theorem (V. A., 2002)

The class B is a complete (w.r.t. Dp) metric space; it consists of
C∞(Zp)-functions and is closed w.r.t. additions, multiplications,
derivations, and compositions of functions; Z[x] is dense in B.

B-functions are p-adic locally analytic of order 1:

f(z+ pkh) = f(z) + f ′(z) ∙ pkh+
f ′′(z)

2!
∙ p2kh2+

f ′′′(z)
3!
∙ p3kh3+ ∙ ∙ ∙

for all z, h ∈ Zp, k= 1, 2, . . .. Moreover, f(j)(z)
j! ∈ Zp, for all j = 0, 1, 2, . . ..
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

Examples (B-functions)

Given u(x), v(x) ∈ B,

the function u(x)
v(x) is in B if and only if v(z) 6≡ 0 (mod p) for all z∈ Zp;
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

Examples (B-functions)

Given u(x), v(x) ∈ B,

the function u(x)
v(x) is in B if and only if v(z) 6≡ 0 (mod p) for all z∈ Zp;

the function (1+ pu(x))v(x) is in B; e.g., expp pv(x) =
∑∞

j=0
pjv(x)j

j! ∈ B
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

Examples (B-functions)

Given u(x), v(x) ∈ B,

the function u(x)
v(x) is in B if and only if v(z) 6≡ 0 (mod p) for all z∈ Zp;

the function (1+ pu(x))v(x) is in B; e.g., expp pv(x) =
∑∞

j=0
pjv(x)j

j! ∈ B

sinp u(x) =
∞∑

j=0

(−1)ju(x)2j+1

(2j + 1)!
, cosp v(x) =

∞∑

j=0

(−1)jv(x)2j

2j!
∈ B
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

Examples (B-functions)

Given u(x), v(x) ∈ B,

the function u(x)
v(x) is in B if and only if v(z) 6≡ 0 (mod p) for all z∈ Zp;

the function (1+ pu(x))v(x) is in B; e.g., expp pv(x) =
∑∞

j=0
pjv(x)j

j! ∈ B

sinp u(x) =
∞∑

j=0

(−1)ju(x)2j+1

(2j + 1)!
, cosp v(x) =

∞∑

j=0

(−1)jv(x)2j

2j!
∈ B

the function lnp(1+ pu(x)) =
∑∞

i=1(−1)i+1 piu(x)i

i is in B;

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 8 / 32



Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

The non-rational functions tk(x) ∈ Ck
p(R) which are constructed above

are also in B: Namely, taking a restriction of the function tk(x) on
Zp ∩Q and expanding the obtained function Zp ∩Q→ Zp ∩Q to the
whole Zp we obtain a B-function.
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Non-rational functions from Ck
p(R)

B =

{

g(x) =
∞∑

i=0

bi

(
x
i

)

:
bi

i!
∈ Zp; i = 0, 1, 2, . . .

}

,

The non-rational functions tk(x) ∈ Ck
p(R) which are constructed above

are also in B: Namely, taking a restriction of the function tk(x) on
Zp ∩Q and expanding the obtained function Zp ∩Q→ Zp ∩Q to the
whole Zp we obtain a B-function.

However, currently it is not known whether this fact implies that tk(x) ∈
C∞p (R) although B-functions are p-adic C∞-functions.

Open question

What are functions from C∞p (R)? Are there in that class other functions
than rational functions over Z? What B-functions are in Cp(R)?

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 8 / 32



1 p-adic 1-Lipschitz maps=causal maps=automata maps

2 Expanding automata maps from Zp ∩Q to R

3 Some properties of automata maps on R

4 Automata maps on a circle

5 Some physics

6 Concluding remarks
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Some properties of Cp(R)-functions
As finite automata are of high importance, it would be reasonable to
study finite automata functions from Cp(R).
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Some properties of Cp(R)-functions
As finite automata are of high importance, it would be reasonable to
study finite automata functions from Cp(R).

Theorem (Finite automata C1-functions = affine functions over Zp ∩Q)

Let a finite automaton function f ∈ C1
p(R); i.e., let f be differentiable both

over R and over Zp; let f ′ ∈ Cp(R) (that is, let the derivatives w.r.t. both
real and p-adic metric exist, coincide on Zp ∩Q, and be continuous
w.r.t. respective metrics). Then f is an affine function over Zp ∩Q; i.e.,
f(x) = ax+ b for suitable a, b ∈ Zp ∩Q. Vice versa, all these affine
functions are finite automata functions from C∞p (R).

Note
The theorem is true in multidimensional case as well.
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Some properties of Cp(R)-functions

Theorem (Finite automata C1-functions = affine functions over Zp ∩Q)

Let a finite automaton function f ∈ C1
p(R); i.e., let f be differentiable both

over R and over Zp; let f ′ ∈ Cp(R) (that is, let the derivatives w.r.t. both
real and p-adic metric exist, coincide on Zp ∩Q, and be continuous
w.r.t. respective metrics). Then f is an affine function over Zp ∩Q; i.e.,
f(x) = ax+ b for suitable a, b ∈ Zp ∩Q. Vice versa, all these affine
functions are finite automata functions from C∞p (R).

Note
The theorem is true in multidimensional case as well.

I This result may serve as an explanation why mathematical formalism
of QM is the theory of linear operators: As all ‘real-world’ systems have
finite number of epistemic states, then when, e.g., duration of temporal
interval measured in Planck units becomes comparable to that number,
the finiteness reveals itself.
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Some properties of Cp(R)-functions
It turns out that Cp(R)-functions are ‘hologram-like’: If they coincide on
arbitrarily small real interval from R, they coincide on R.

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.
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Some properties of Cp(R)-functions
It turns out that Cp(R)-functions are ‘hologram-like’: If they coincide on
arbitrarily small real interval from R, they coincide on R.

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

The hologram-like property resembles the property of a plate with a holo-
gram on it: Even a small piece of the plate is enough to restore the image
stored by the whole plate wit the hologram.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I This property can be used in order to construct various classes of
automata functions which approximate real functions. For instance, one
can take polynomials with rational integer coefficients (i.e., the polyno-
mials from Z[x]) as such a class.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I This property can be used in order to construct various classes of
automata functions which approximate real functions. For instance, one
can take polynomials with rational integer coefficients (i.e., the polyno-
mials from Z[x]) as such a class. Note that polynomials over Z are in
Cp(R) and in B. Note also that the theory of approximations by polyno-
mials over Z is well-developed, see, e.g., L. B. O. Ferguson, 1980. We
remind some classical results of the theory.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I This property can be used in order to construct various classes of
automata functions which approximate real functions. For instance, one
can take polynomials with rational integer coefficients (i.e., the polyno-
mials from Z[x]) as such a class. We remind some classical results
of the theory.

(J. Pál,1914) A continuous real-valued function g defined on the
interval [−α, α] ⊂ R, 0< α < 1, can be uniformly approximated by
polynomials from Z[x] if and only if g(0) ∈ Z. In particular:

(M. I.Chlodovsky, 1925) A continuous real-valued function on a
real interval which does not contain integer can be uniformly
approximated by polynomials from Z[x].
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I This property can be used in order to construct various classes of
automata functions which approximate real functions. For instance, one
can take polynomials with rational integer coefficients (i.e., the polyno-
mials from Z[x]) as such a class. We remind some classical results
of the theory.

(M. I.Chlodovsky, 1925) A continuous real-valued function on a
real interval which does not contain integer can be uniformly
approximated by polynomials from Z[x].

I By using approximations via polynomials from Z[x] it is possible
to show that any continuous real-valued function defined on real in-
terval [α, β] can be uniformly approximated by ‘time-reversible’ au-
tomata.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I This property can be used in order to construct various classes of
automata functions which approximate real functions. For instance, one
can take polynomials with rational integer coefficients (i.e., the polyno-
mials from Z[x]) as such a class.
I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I The time reversibility of an automaton means that the automaton
mapping f : Zp→ Zp is bijective; but a 1-Lipschitz map Zp→ Zp is bijec-
tive if and only if it is an isometry w.r.t. p-adic metric, or, equivalently, if
and only if f is measure-preserving w.r.t. normalized Haar measure on
Zp.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I The time reversibility of an automaton means that the automaton
mapping f : Zp→ Zp is bijective; but a 1-Lipschitz map Zp→ Zp is bijec-
tive if and only if it is an isometry w.r.t. p-adic metric, or, equivalently, if
and only if f is measure-preserving w.r.t. normalized Haar measure on
Zp.
The theory of 1-Lipschitz measure-preserving functions Zp→ Zp is well
developed, there are known various criteria and sufficient conditions for
measure-preservation; we can use them to construct various approxi-
mations by time reversible automata.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I The time reversibility of an automaton means that the automaton
mapping f : Zp→ Zp is bijective; but a 1-Lipschitz map Zp→ Zp is bijec-
tive if and only if it is an isometry w.r.t. p-adic metric, or, equivalently, if
and only if f is measure-preserving w.r.t. normalized Haar measure on
Zp.
I Given a continuous real-valued function w(x) on real interval [α, β] ⊂
[0, 1] where α > 0, consider the function w̃(x) = w(x)−x

p . Since w̃(x) is
continuous on [α, β], it can be uniformly approximated by polynomials
ui(x) ∈ Zp[x], in view of Chlodovsky theorem.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I The time reversibility of an automaton means that the automaton
mapping f : Zp→ Zp is measure-preserving .
I Given a continuous real-valued function w(x) on real interval [α, β] ⊂
[0, 1] where α > 0, consider the function w̃(x) = w(x)−x

p . Since w̃(x) is
continuous on [α, β], it can be uniformly approximated by polynomials
ui(x) ∈ Zp[x].
I Hence w(x) can be uniformly approximated by polynomials vi(x) =
x+ p ∙ ui(x) ∈ Z[x]; but all vi(x) are measure-preserving, thus, they are
automata functions of time-reversible automata.
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Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I Can this be treated as time reversibility at Planck time scale but gen-
erally time non-reversibility at macro-scale? Ask physicists!

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 10 / 32



Some properties of Cp(R)-functions

Theorem (Hologram-like property of Cp(R)-functions)

Let f, g ∈ Cp(R), α, β ∈ R, α < β; then f = g if and only if f(x) = g(x) for
all x ∈ (α, β) ∩ Zp ∩Q.

I By using approximations via polynomials from Z[x] it is possible to
show that any continuous real-valued function defined on real interval
[α, β] can be uniformly approximated by ‘time-reversible’ automata.
I In a similar way it can be shown that a real-valued continuous func-
tion v(x) on [α, β] can be uniformly approximated by ergodic automata
functions.
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Some properties of Cp(R)-functions

I It can be shown that a real-valued continuous function v(x) on [α, β]
can be uniformly approximated by ergodic automata functions.
I It suffices to approximate the function v(x) by polynomials wj(x), then
approximate by polynomials uji (x) ∈ Z[x] every function w̃j(x) which sat-

isfy the equation wj(x)−x−1
p = Δw̃j(x), where Δ is difference operator,

Δd(x) = d(x+ 1) − d(x). Then all wj(x) can be uniformly approximated
by polynomials 1+ x+ p ∙Δuij (x) over Z; thus v(x) can be uniformly ap-
proximated by polynomials of the form 1+ x+ p ∙ Δu(x) ∈ Z[x] (where
u(x)Z[x]) which are all ergodic since every function Zp → Zp of the
form 1 + x + p ∙ Δd(x) is 1-Lipschtz and ergodic, for every 1-Lipschtz
d: Zp→ Zp.
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Some properties of Cp(R)-functions

I It can be shown that a real-valued continuous function v(x) on [α, β]
can be uniformly approximated by ergodic automata functions.
I One may say that ergodicity of an automaton function d: Zp → Zp

means that the automaton ‘behaves like a clock’since for p-adic 1-
Lipschitz functions ergodicity is equivalent to the property that for ev-
ery n = 1, 2, 3, . . ., the sequence of iterates c0, c1 = d(c0), c2 = d(c1) =
d2(c0), . . . taken modulo pn, is a purely periodic sequence over residue
ring Z/pnZ of rational integers modulo pn, the length of the period is pn,
and every residue from Z/pnZ = {0, 1, . . . , pn − 1} occurs at the period
exactly once.
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Some properties of Cp(R)-functions

I One may say that ergodicity of an automaton function d: Zp → Zp

means that the automaton ‘behaves like a clock’since for p-adic 1-
Lipschitz functions ergodicity is equivalent to the property that for ev-
ery n = 1, 2, 3, . . ., the sequence of iterates c0, c1 = d(c0), c2 = d(c1) =
d2(c0), . . . taken modulo pn, is a purely periodic sequence over residue
ring Z/pnZ of rational integers modulo pn, the length of the period is pn,
and every residue from Z/pnZ = {0, 1, . . . , pn − 1} occurs at the period
exactly once.
Thus, taking p-adic canonical representation ci = δ

i
0+ δ

i
1 ∙p+ δ

i
2 ∙p

2+ ∙ ∙ ∙
(where δ

j
i ∈ {0, 1, . . . , p − 1}) one may think of the se-

quence of iterates as of consecutive readouts of a timer

∙ ∙ ∙ ∙ ∙ ∙

Lengths of periods: p p2 p3 pk+1

δi
0 δ

i
1 δ

i
2 δi

k

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 10 / 32



Some properties of Cp(R)-functions

I One may say that ergodicity of an automaton function d: Zp → Zp

means that the automaton ‘behaves like a clock’
One may think of consecutive values of ergodic au-
tomaton function as of consecutive readouts of a timer

∙ ∙ ∙ ∙ ∙ ∙

Lengths of periods: p p2 p3 pk+1

δi
0 δ

i
1 δ

i
2 δi

k

I Only higher order digits δj
i where i is many orders larger than Planck’s

time can be measured; hence lower order digits play a role of ‘hidden
variables’ whereas the higher order digits exhibit ‘chaotic behaviour’.
Postpone rigourous definition of what does ‘chaotic behavior’ mean
but note that a well-known example of chaotic maps, the logistic map
L(x) = rx(x− 1), is not chaotic ‘at Planck distances’.
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Some properties of Cp(R)-functions
One may think of consecutive values of ergodic automaton function as
of consecutive readouts of a timer

∙ ∙ ∙ ∙ ∙ ∙

Lengths of periods: p p2 p3 pk+1

δi
0 δ

i
1 δ

i
2 δi

k

I Only higher order digits δj
i ∈ {0, 1, . . . , p− 1} where i is many orders

larger than Planck’s time can be measured; hence lower order digits
play a role of ‘hidden variables’ whereas the higher order digits exhibit
‘chaotic behaviour’. Postpone rigourous definition of what does ‘chaotic
behavior’ mean but note that a well-known example of chaotic maps, the
logistic map L(x) = rx(x− 1), is not chaotic ‘at Planck distances’:
I For no r ∈ Zp ∩Q that map is ergodic w.r.t. Haar measure on Zp, not
speaking of mixing.
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Some properties of Cp(R)-functions

Logistic map L(x) = rx(x− 1) is not chaotic ‘at Planck distances’:
I For no r ∈ Zp ∩Q that map is ergodic w.r.t. Haar measure on Zp, not
speaking of mixing.

No chaotic causal maps at Planck distances

It can be proved that there are no 1-Lipschitz maps Zp→ Zp which are
mixing w.r.t. normalized Haar measure on Zp; only the ergodic ones
exist. Moreover, all ergodic 1-Lipschitz maps are conjugate in the
group of all measure-preserving 1-Lipschitz maps Zp→ Zp to the
odometer map x 7→ x+ 1 and thus all have zero entropy.
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Logistic map L(x) = rx(x− 1) is not chaotic ‘at Planck distances’:
I For no r ∈ Zp ∩Q that map is ergodic w.r.t. Haar measure on Zp, not
speaking of mixing.

No chaotic causal maps at Planck distances

It can be proved that there are no 1-Lipschitz maps Zp→ Zp which are
mixing w.r.t. normalized Haar measure on Zp; only the ergodic ones
exist. Moreover, all ergodic 1-Lipschitz maps are conjugate in the
group of all measure-preserving 1-Lipschitz maps Zp→ Zp to the
odometer map x 7→ x+ 1 and thus all have zero entropy.

I Although the logistic map L(x) is a p-adic 1-Lipschitz map (thus, an
automaton function), the map is a well-known chaotic map on R, despite
L(x) ∈ Cp(R) if r ∈ Zp ∩Q. Where does that chaos come from?
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Some properties of Cp(R)-functions

Logistic map L(x) = rx(x− 1) is not chaotic ‘at Planck distances’:
I For no r ∈ Zp ∩Q that map is ergodic w.r.t. Haar measure on Zp, not
speaking of mixing.

No chaotic causal maps at Planck distances

It can be proved that there are no 1-Lipschitz maps Zp→ Zp which are
mixing w.r.t. normalized Haar measure on Zp; only the ergodic ones
exist. Moreover, all ergodic 1-Lipschitz maps are conjugate in the
group of all measure-preserving 1-Lipschitz maps Zp→ Zp to the
odometer map x 7→ x+ 1 and thus all have zero entropy.

I Although the logistic map L(x) is a p-adic 1-Lipschitz map (thus, an
automaton function), the map is a well-known chaotic map on R, despite
L(x) ∈ Cp(R) if r ∈ Zp ∩Q. Where does that chaos come from?
I In order to answer that question we will adjoin ‘time shifts at Planck
distances’ to causal maps; or, to put it in other words, we will expand
automata functions to the whole field Qp of p-adic numbers.
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1 p-adic 1-Lipschitz maps=causal maps=automata maps

2 Expanding automata maps from Zp ∩Q to R

3 Some properties of automata maps on R

4 Automata maps on a circle

5 Some physics

6 Concluding remarks
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
I Such an expansion exploits common physical notion of ‘time shift’
since p−kf(pks) can naturally be treated as ‘effect’ of causal system (=out-
put of the automaton) to the ‘cause’ pks ∈ Zp (=input of the automaton)
for the system which has started to evolve k Planck time units before
‘moment zero’ when observer starts observations.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
I Such an expansion exploits common physical notion of ‘time shift’
since p−kf(pks) can naturally be treated as ‘effect’ of causal system (=out-
put of the automaton) to the ‘cause’ pks ∈ Zp (=input of the automaton)
for the system which has started to evolve k Planck time units before
‘moment zero’ when observer starts observations.

Caution!

Generally, p−nf(pnt) 6= f(t), for arbitrary 1-Lipschitz map f : Zp→ Zp,
n ∈ N, z∈ Zp since general automaton feeded by a zero input
sequence may nonetheless update its states.

But p−nf(pnz) = f(z) for all n ∈ N and z∈ Zp if the automaton remains in
initial state until it accepts the first non-zero symbol, i.e., ‘when in initial
state, the system does not evolve until there is no input signal’.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
I Recall that any complex character ofQ+p is of the form χr(s) = e2πi{sr}p,
where r ∈ Qp; χr is a continuous group epimorphism into the group of
complex roots of unity (which is isomorphic to the group Q+/Z+). We
take r = 1, denote χ1 = χ and, given a 1-Lipschitz map f : Zp → Zp,
consider a mapping f̌ defined as follows:

f̌ : χ(s) 7→ χ(f(s)); that is, f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 or, which is actually the same, with the
points of the real unit square I2 = I × I where I = [0, 1]. Denote corre-
sponding point set via E2(f). Denote P2(f) the closure of E2(f) in R2; call
P2(f) a (2-dimensional) plot of the 1-Lipschitz map f.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
I Recall that any complex character ofQ+p is of the form χr(s) = e2πi{sr}p,
where r ∈ Qp; χr is a continuous group epimorphism into the group of
complex roots of unity (which is isomorphic to the group Q+/Z+). We
take r = 1, denote χ1 = χ and, given a 1-Lipschitz map f : Zp → Zp,
consider a mapping f̌ defined as follows:

f̌ : χ(s) 7→ χ(f(s)); that is, f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 or, which is actually the same, with the
points of the real unit square I2 = I × I where I = [0, 1]. Denote cor-
responding point set via E2(f). Denote P2(f) the closure of E2(f) in R2;
call P2(f) a (2-dimensional) plot of the 1-Lipschitz map f. The plot P2

‘keeps records’ of evolution of the system.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
Given a 1-Lipschitz map f : Zp → Zp, consider a mapping f̌ defined as
follows:

f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 (or with the points of the real unit square
I2). Denote corresponding point set via E2(f). Denote P2(f) the closure
of E2(f) in R2; call P2(f) a (2-dimensional) plot of the 1-Lipschitz map f.
P2 ‘keeps records’ of evolution of the system.
I In a similar way, given f̆ ∈ Cp(R), define a mapping

f̂ : e2πiz 7→ e2πif(z) (z∈ Zp ∩Q).

Here we use characters of R+ rather than characters of Q+p .
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
Given a 1-Lipschitz map f : Zp → Zp, consider a mapping f̌ defined as
follows:

f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 (or with the points of the real unit square
I2). Denote corresponding point set via E2(f). Denote P2(f) the closure
of E2(f) in R2; call P2(f) a (2-dimensional) plot of the 1-Lipschitz map f.
P2 ‘keeps records’ of evolution of the system.
I In a similar way, given f̆ ∈ Cp(R), define a mapping

f̂ : e2πiz 7→ e2πif(z) (z∈ Zp ∩Q).

Define Ê2(f), P̂2(f); note that P̂2(f) ⊂ P2(f).
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
Given a 1-Lipschitz map f : Zp → Zp, consider a mapping f̌ defined as
follows:

f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 (or with the points of the real unit square
I2). Denote corresponding point set via E2(f). Denote P2(f) the closure
of E2(f) in R2; call P2(f) a (2-dimensional) plot of the 1-Lipschitz map f.
P2 ‘keeps records’ of evolution of the system.
I In a similar way, given f̆ ∈ Cp(R), define a mapping

f̂ : e2πiz 7→ e2πif(z) (z∈ Zp ∩Q).

Define Ê2(f), P̂2(f); P̂2(f) shows where the system ‘finally occurs’.
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Cp(R)-functions on a circle

I Given a 1-Lipschitz map f : Zp → Zp and s ∈ Qp, let [s]p and {s}p =
ζ−kp−k + ∙ ∙ ∙ + ζ−1p−1 be integral and fractional parts of s respectively;
put f(s) = p−kf(pks). This way we expand f to the whole field Qp.
Given a 1-Lipschitz map f : Zp → Zp, consider a mapping f̌ defined as
follows:

f̌ : e2πi{s}p 7→ e2πi{f(s)}p (s∈ Qp).

I The pairs (e2πi{s}p; e2πi{f(s)}p) can be identified with the points on the
surface of the torus T2 ⊂ R3 (or with the points of the real unit square
I2). Denote corresponding point set via E2(f). Denote P2(f) the closure
of E2(f) in R2; call P2(f) a (2-dimensional) plot of the 1-Lipschitz map f.
P2 ‘keeps records’ of evolution of the system.
I In a similar way, given f̆ ∈ Cp(R), define a mapping

f̂ : e2πiz 7→ e2πif(z) (z∈ Zp ∩Q).

Define Ê2(f), P̂2(f); call P̂2(f)a ultimate plot of f. Discuss plots in detail.
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Cp(R)-functions on a circle: Details
Given a 1-Lipschitz map f : Zp→ Zp (which also can be regarded as an
automaton function f = fA of an automaton A) consider a set of all points
ef

k(x) of the Euclidean unit square I2 = [0, 1]2 ⊂ R2,

ef
k(x) =

(
xmodpk

pk ;
f(x)modpk

pk

)

, (x ∈ Zp, k ∈ N)

Note that f(x)modpk is merely a k-letter output word that corresponds
to the k-letter input word xmodpk. Note also that

ef
k =

(

e
2πi x

pk , e
2πi f

(
x

pk

))

∈ T2 according to conventions we made above.

A

x modpk = = f(x) modpkχk−1 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙χ1χ0 ξk−1 ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ξ1ξ0︸ ︷︷ ︸

(0.χk−1 . . . χ1χ0; 0.ξk−1 . . . ξ1ξ0)
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Cp(R)-functions on a circle: Details
Given a 1-Lipschitz map f : Zp→ Zp (which also can be regarded as an
automaton function f = fA of an automaton A) consider a set of all points
ef

k(x) of the Euclidean unit square I2 = [0, 1]2 ⊂ R2,

ef
k(x) =

(
xmodpk

pk ;
f(x)modpk

pk

)

, (x ∈ Zp, k ∈ N)

Denote via α2(f) the Lebesgue measure of the closure P2(f) (in the
topology of R2 ) of the set of all points ef

k(x), where x ∈ Zp, k= 1, 2, 3, . . ..
The set P2(f) is called a 2-dimensional plot of f.
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Cp(R)-functions on a circle: Details
Given a 1-Lipschitz map f : Zp→ Zp (which also can be regarded as an
automaton function f = fA of an automaton A) consider a set of all points
ef

k(x) of the Euclidean unit square I2 = [0, 1]2 ⊂ R2,

ef
k(x) =

(
xmodpk

pk ;
f(x)modpk

pk

)

, (x ∈ Zp, k ∈ N)

Denote via α2(f) the Lebesgue measure of the closure P2(f) (in the
topology of R2 ) of the set of all points ef

k(x), where x ∈ Zp, k= 1, 2, 3, . . ..
The set P2(f) is called a 2-dimensional plot of f.

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either α2(f) = 0, or α2(f) = 1 otherwise
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Cp(R)-functions on a circle: Details
Given a 1-Lipschitz map f : Zp→ Zp (which also can be regarded as an
automaton function f = fA of an automaton A) consider a set of all points
ef

k,n(x) of the Euclidean unit hypercube In = [0, 1]n ⊂ Rn, n≥ 2,

ef
k,n(x) =

(
xmodpk

pk ;
f(x)modpk

pk ; . . . ;
fn−1(x)modpk

pk

)

, (x ∈ Zp, k ∈ N)

Denote via αn(f) the Lebesgue measure of the closure Pn(f) (in the
topology of Rn ) of the set of all points ef

k,n(x), where x ∈ Zp, k =
1, 2, 3, . . .. The set Pn(f) is called an n-dimensional plot of f.

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either αn(f) = 0, or αn(f) = 1 otherwise (n≥ 2)

These alternatives correspond to the cases Pn(f) is nowhere dense in
In and Pn(f) = In, respectively.
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Cp(R)-functions on a circle: Details

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either αn(f) = 0, or αn(f) = 1 otherwise (n≥ 2)

We will say that a 1-Lipschitz map (resp., an automaton) f : Zp→ Zp is
of measure 1 (in dimension n) if αn(f) = 1, and of measure 0 otherwise.
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Cp(R)-functions on a circle: Details

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either αn(f) = 0, or αn(f) = 1 otherwise (n≥ 2)

We will say that a 1-Lipschitz map (resp., an automaton) f : Zp→ Zp is
of measure 1 (in dimension n) if αn(f) = 1, and of measure 0 otherwise.

Theorem (Polynomials of measure 1 in all dimensions; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2, then αn(f) = 1, for all
n= 2, 3, 4, . . ..

I Recall that all polynomials over Z are Cp(R)-functions!
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Cp(R)-functions on a circle: Details

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either αn(f) = 0, or αn(f) = 1 otherwise (n≥ 2)

Theorem (Polynomials of measure 1 in all dimensions; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2, then αn(f) = 1, for all
n= 2, 3, 4, . . ..

Actually a stronger result is true:

Theorem (Ultimate uniform distribution; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2 then the distribution of points
ef

k,n(x) in the unit hypercube In tends to uniform as k→∞, for every
n ∈ {2, 3, 4, . . .}.
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Cp(R)-functions on a circle: Details

Theorem (Ultimate uniform distribution; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2 then the distribution of points
ef

k,n(x) in the unit hypercube In tends to uniform as k→∞, for every
n ∈ {2, 3, 4, . . .}.

Two sources of chaos

1-st : Chaos emerges from infinite ‘chaotic sequences’ like random
real numbers by iterating them via Bernoulli-shift-like mappings.
That is, when it is assumed a priory that ‘chaos do exist
immanently’.
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Cp(R)-functions on a circle: Details

Theorem (Ultimate uniform distribution; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2 then the distribution of points
ef

k,n(x) in the unit hypercube In tends to uniform as k→∞, for every
n ∈ {2, 3, 4, . . .}.

Two sources of chaos

1-st : Chaos emerges from infinite ‘chaotic sequences’ like random
real numbers by iterating them via Bernoulli-shift-like mappings.

2-nd : Chaos emerges from the ‘lack of knowledge’ of ‘what causes
had happened at the beginning’ during short temporal interval in
Planck’s time units; i.e., since an observer can’t determine by
measurements what are low-order digits of the input x ∈ Zp of the
causal function f which therefore are ‘hidden parameters’.
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Cp(R)-functions on a circle: Details

Theorem (Ultimate uniform distribution; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2 then the distribution of points
ef

k,n(x) in the unit hypercube In tends to uniform as k→∞, for every
n ∈ {2, 3, 4, . . .}.

Two sources of chaos

2-nd : Chaos emerges since an observer can’t determine by
measurements what are low-order digits of the input x ∈ Zp of the
causal function f which therefore are ‘hidden parameters’.

I Lerner’s theorem implies that iterations of a polynomial f ∈ Z[x] which
is ergodic w.r.t. normalized Haar measure onZp and s.t. degf ≥ 2 results
in a ‘mixing’ in the unit square I2: Points of each closed region of I2 will
be eventually uniformly distributed over I2 by iterations of f.
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Cp(R)-functions on a circle: Details

Theorem (Ultimate uniform distribution; E. Lerner, 2013)

If f is a polynomial over Z and degf ≥ 2 then the distribution of points
ef

k,n(x) in the unit hypercube In tends to uniform as k→∞, for every
n ∈ {2, 3, 4, . . .}.

Two sources of chaos

2-nd : Chaos emerges since an observer can’t determine by
measurements what are low-order digits of the input x ∈ Zp of the
causal function f which therefore are ‘hidden parameters’.

I Lerner’s theorem implies that iterations of a polynomial f ∈ Z[x] which
is ergodic w.r.t. normalized Haar measure on Zp and s.t. degf ≥ 2
results in a ‘mixing’ in the unit square I2: Points of each closed region
of I2 will be eventually uniformly distributed over I2 by iterations of f.
Nonetheless pronounced straight lines (=windings of a torus) may occur
in the plots.
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Cp(R)-functions on a circle: Details

Theorem (The automata 0-1 law; V. A., 2009)

Given a 1-Lipschitz function f : Zp→ Zp, the following alternative holds:
either αn(f) = 0, or αn(f) = 1 otherwise (n≥ 2)

Pronounced straight lines (=windings of a torus) may occur in the plots.
I We are going to understand what are the lines.
Firstly note that plots of finite autonomous automata (=constants from
Zp ∩ Q) and plots of finite affine automata (=whose automata functions
are x 7→ ax+ b, where a, b ∈ Zp ∩ Q) are windings of a torus (=linear
flows on torus); i.e., images of straight lines in R2 under the mapping

mod1: (x; y) 7→ (xmod 1; ymod 1) ∈ T2.
The windings may also be treated as graphs on the torus T2 of functions
S→ S on the circle S of the form {(e2πit ; e2πi(at+b)) : t ∈ R}.
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Cp(R)-functions on a circle: Details
Firstly note that plots of finite autonomous automata (=constants from
Zp ∩ Q) and plots of finite affine automata (=whose automata functions
are x 7→ ax+ b, where a, b ∈ Zp ∩ Q) are windings of a torus (=linear
flows on torus); i.e., images of straight lines in R2 under the mapping

mod1: (x; y) 7→ (xmod 1; ymod 1) ∈ T2.
The windings may also be treated as graphs on the torus T2 of functions
S→ S on the circle S of the form {(e2πit ; e2πi(at+b)) : t ∈ R}.

Plots of finite automata are nowhere dense subsets of measure 0.

There exist 1-Lipschitz maps which correspond to no finite
automata but whose plots are nowhere dense subsets of zero
measure.

In the plots of automata of measure 0 there are no ‘figures’; but ‘lines’
may occur even in the plots of infinite automata of measure 0.
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Cp(R)-functions on a circle: Details
Both plots of constants from Zp ∩Q and plots of affine automata func-
tions x 7→ ax+ b (where a, b ∈ Zp ∩Q) are windings of a torus , images
of straight lines in R2 under the mapping

mod1: (x; y) 7→ (xmod 1; ymod 1) ∈ T2.
The windings may also be treated as graphs on the torus T2 of functions
S→ S on the circle S of the form {(e2πit ; e2πi(at+b)) : t ∈ R}.

Theorem (V. A., 2015)

Let f : Zp→ Zp be an automaton function of a finite automaton; let g be
a C2 real function with domain [a, b] ⊂ [0, 1) and range [0, 1). Let the
graph G(g) = {(x; g(x)) : x ∈ [a, b]} of g lie completely in P2(f). Then
there exist a, b ∈ Q ∩ Zp such that g(x) = (ax+ b)mod 1for all x ∈ [a, b];
moreover, there is a winding of the torus T2 which lies completely in
P2(f) and which contains the graph G(g) of the function g.
There are no more than a finite number of pairwise distinct windings of
the unit torus T2 in P2(f); all of these are images of real affine functions
x 7→ ax+ b for a, b ∈ Zp ∩Q under the mapping mod1: R2→ T2.
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Cp(R)-functions on a circle: Details

Theorem (V. A., 2015)

Let f : Zp→ Zp be an automaton function of a finite automaton; let g be
a C2 real function with domain [a, b] ⊂ [0, 1) and range [0, 1). Let the
graph G(g) = {(x; g(x)) : x ∈ [a, b]} of g lie completely in P2(f). Then
there exist a, b ∈ Q ∩ Zp such that g(x) = (ax+ b)mod 1for all x ∈ [a, b];
moreover, there is a winding of the torus T2 which lies completely in
P2(f) and which contains the graph G(g) of the function g.
There are no more than a finite number of pairwise distinct windings of
the unit torus T2 in P2(f); all of these are images of real affine functions
x 7→ ax+ b for a, b ∈ Zp ∩Q under the mapping mod1: R2→ T2.

I The theorem is true for finite automata functions f : Zn
p→ Zm

p as well.
This also may serve as a manifestation of the fact that linearity of op-
erators of the mathematical apparatus of quantum mechanics emerges
from the finiteness of epistemic states of causal functions.
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Cp(R)-functions on a circle: Details
Note that in cylindrical coordinates the winding t 7→ α

β t + ω of a torus
whose axis of rotation is Z can be represented by parametric equations




r0

θ

z



 =







R+ r cos
(
α
β t+ ω

)

t

r sin
(
α
β t+ ω

)





 , t ∈ R.

The winding winds β times around Z-axis and |α| times around a circle
in the interior of the torus (the sign of α determines whether the rotation
is clockwise or counter-clockwise). Therefore ‘physical meaning’ of the
coefficient a= α

β of the affine map z 7→ az+b, which is a finite automaton
function of affine automaton, is frequency . The choice of sign + or −
depends only on what direction of rotation is assumed to be ‘positive’ or
‘negative’. To the map it correspond functions R→ C

ψk(y) = ei(α
β

y−2πpkb)
= e2πi( α2πβ y−pkb)

(k= 0, 1, 2, . . .)
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Cp(R)-functions on a circle: Details

I Note that all the windings are automata functions of minimal au-
tomata; i.e., the automata whose state diagram is connected: Given
two (epistemic) s, t ∈ S, there is finite word w in the alphabet Fp =
{0, 1, . . . , p− 1} such that when the automaton in state s accepts w, the
automaton changes its state to t. If an automaton reaches a state which
belongs to its minimal sub-automaton, the automaton will never get out
of the sub-automaton.
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Cp(R)-functions on a circle: Details

1 7→ 0

0 7→ 0

1 7→ 1

0 7→ 1

0 7→ 0

0 7→ 01 7→ 1

3 2 1

0
State transition diagram of the automaton
which has two minimal sub-automata,
whose automata functions are u(z) = 3z
and v(z) = 5z where z∈ Z2.
Initial state of the automaton is 0.

1 7→ 1

4

7

0 7→ 0

0 7→ 0

0 7→ 0

1 7→ 0

0 7→ 1

0 7→ 11 7→ 1

1 7→ 1

1 7→ 0

1 7→ 1

8 5 6
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Cp(R)-functions on a circle: Details
State transition diagram of finite automaton may be thought of as a tree
each path in which ends with a minimal sub-automaton. There are no
outgoing paths from any minimal sub-automaton. By feeding the au-
tomaton with random long words, to each minimal sub-automaton we
assign a probability when the automaton occurs in states belonging to
a minimal sub-automaton. If the sub-automaton is affine, we therefore
assign a probability to its automaton function, thus to e2πi(ξx+b).

s0

1

0

1

0
1

0

s1

minimal

minimal

s2
minimal

For some states one of two outgoing arrows
may be a loop: The automaton won’t move to
another state until input symbol changed

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 13 / 32



Cp(R)-functions on a circle: Details
By feeding the automaton with random long words, to each minimal
sub-automaton we assign a probability when the automaton occurs in
states belonging to a minimal sub-automaton. If the sub-automaton is
affine, we therefore assign a probability to its automaton function, thus
to e2πi(ξx+b). This way we assign to the automaton the sum

∑
j qξe−2πiξx,

where qa is a probability reaching a minimal automaton whose automa-
ton function is z 7→ 2πξz+ b (we discard non-affine automata before
assigning qξ ’s).

s0

1

0

1

0
1

0

s1

minimal

minimal

s2
minimal

For some states one of two outgoing arrows
may be a loop: The automaton won’t move to
another state until input symbol changed
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Cp(R)-functions on a circle: Details
By feeding the automaton with random long words, to each minimal
sub-automaton we assign a probability when the automaton occurs in
states belonging to a minimal sub-automaton. If the sub-automaton is
affine, we therefore assign a probability to its automaton function, thus
to e2πi(ξx+b). This way we assign to the automaton the sum

∑
j qξe−2πiξx,

where qa is a probability reaching a minimal automaton whose automa-
ton function is z 7→ 2πξz+ b (we discard non-affine automata before
assigning qξ ’s).
I Any automaton function (=a 1-Lipschitz function Zp → Zp) can be
uniformly approximated on Zp by finite automata functions.
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Cp(R)-functions on a circle: Details
By feeding the automaton with random long words, to each minimal
sub-automaton we assign a probability when the automaton occurs in
states belonging to a minimal sub-automaton. If the sub-automaton is
affine, we therefore assign a probability to its automaton function, thus
to e2πi(ξx+b). This way we assign to the automaton the sum

∑
j qξe−2πiξx,

where qa is a probability reaching a minimal automaton whose automa-
ton function is z 7→ 2πξz+ b (we discard non-affine automata before
assigning qξ ’s).
I Any automaton function (=a 1-Lipschitz function Zp → Zp) can be
uniformly approximated on Zp by finite automata functions.
For f ∈ Cp(R), consider a sequence (fn)∞i=0 of finite automata functions
such that f(z) ≡ fn(z) (mod pn) for all z ∈ Zp ∩ Q (i.e., for all z from the
residue ring Z/pnZ since both f and fn are 1-Lipschitz), n= 1, 2, 3, . . . and
having assigned the sum Sn =

∑
(ξ) Pξ,ne−2πiξx to every fn, we by sending

n→∞ assign to f ∈ Cp(R) the distribution (as P(ξ) is a distribution)
∫

R
P(ξ)e−2πixξdξ
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Cp(R)-functions on a circle: Details

I Any automaton function (=a 1-Lipschitz function Zp → Zp) can be
uniformly approximated on Zp by finite automata functions.
For f ∈ Cp(R), consider a sequence (fn)∞i=0 of finite automata functions
such that f(z) ≡ fn(z) (mod pn) for all z ∈ Zp ∩ Q (i.e., for all z from the
residue ring Z/pnZ since both f and fn are 1-Lipschitz), n= 1, 2, 3, . . . and
having assigned the sum Sn =

∑
(ξ) Pξ,ne−2πiξx to every fn, we by sending

n→∞ assign to f ∈ Cp(R) the distribution (as P(ξ) is a distribution)
∫

R
P(ξ)e−2πixξdξ

Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ.
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Cp(R)-functions on a circle: Details
For f ∈ Cp(R), consider a sequence (fn)∞i=0 of finite automata functions
such that f(z) ≡ fn(z) (mod pn) for all z ∈ Zp ∩ Q (i.e., for all z from the
residue ring Z/pnZ since both f and fn are 1-Lipschitz), n= 1, 2, 3, . . . and
having assigned the sum Sn =

∑
(ξ) Pξ,ne−2πiξx to every fn, we by sending

n→∞ assign to f ∈ Cp(R) the distribution (as P(ξ) is a distribution)
∫

R
P(ξ)e−2πixξdξ

Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ. For
instance, for the mentioned example automaton the integral is

∫

R

(
1
2
δ

(

ξ −
3

2π

)

+
1
2
δ

(

ξ −
5

2π

))

e−2πixξdξ =

1
2

(
e−2πix 3

2π + e−2πix 5
2π

)
=

1
2

(
e−3ix + e−5ix)
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Cp(R)-functions on a circle: Details
For f ∈ Cp(R), assign to f ∈ Cp(R) the distribution (as P(ξ) is a distribu-
tion) ∫

R
P(ξ)e−2πixξdξ

Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ.

∫

R
P(ξ)e−2πixξdξ =

∑ #PathfA(ξ)
#PathfA

e−2πξx

where #PathfA(ξ) is the number of paths leading to minimal sub-
automata of the automaton A whose automaton function is z 7→ ξ

2πz+ b
for some b ∈ Zp ∩ Q; and #PathfA is total number of paths leading to
minimal sub-automata.
I Note that to every such path path(ξ) of length N it corresponds input
sequence χ0, χ1, . . . , χN−1 over a p-symbol alphabet; i.e., the integer
num(ξ) = χ0+ χ1+ ∙ ∙ ∙+ χN−1pN−1.
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Cp(R)-functions on a circle: Details
Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ.

∫

R
P(ξ)e−2πixξdξ =

∑ #PathfA(ξ)
#PathfA

e−2πξx

where #PathfA(ξ) is the number of paths leading to minimal sub-
automata of the automaton A whose automaton function is z 7→ ξ

2πz+ b
for some b ∈ Zp ∩ Q; and #PathfA is total number of paths leading to
minimal sub-automata.
I Note that to every such path path(ξ) of length N it corresponds input
sequence χ0, χ1, . . . , χN−1 over a p-symbol alphabet; i.e., the integer
num(ξ) = χ0+ χ1+ ∙ ∙ ∙+ χN−1pN−1.
I In general case, every probability P(ξ) is Haar measure of all z∈ Zp

s.t. zmodpN = num(ξ) for some path of length N which to minimal sub-
automaton whose automaton function is z 7→ 2πξz+ b since given ξ, all
that z constitute a union of balls in Zp.
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Cp(R)-functions on a circle: Details
Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ.

∫

R
P(ξ)e−2πixξdξ =

∑ #PathfA(ξ)
#PathfA

e−2πξx

where #PathfA(ξ) is the number of paths leading to minimal sub-
automata of the automaton A whose automaton function is z 7→ ξ

2πz+ b
for some b ∈ Zp ∩ Q; and #PathfA is total number of paths leading to
minimal sub-automata.
I In general case, every probability P(ξ) is Haar measure of all z∈ Zp

s.t. zmodpN = num(ξ) for some path of length N which to minimal sub-
automaton whose automaton function is z 7→ 2πξz+ b .
I Expanding the distribution for all ξ ∈ R rather than only for s.t.
2πξ ∈ Zp ∩ Q, we put into correspondence to the automaton the ele-
ment

∫
R P(ξ)e−2πixξdξ of Hilbert space.
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Cp(R)-functions on a circle: Details
Whenever a finite automaton is represented by its state transition dia-
gram, it is possible to find the integral explicitly by using Dirac’s δ.

∫

R
P(ξ)e−2πixξdξ =

∑ #PathfA(ξ)
#PathfA

e−2πξx

where #PathfA(ξ) is the number of paths leading to minimal sub-
automata of the automaton A whose automaton function is z 7→ ξ

2πz+ b
for some b ∈ Zp ∩ Q; and #PathfA is total number of paths leading to
minimal sub-automata.
I In general case, every probability P(ξ) is Haar measure of all z∈ Zp

s.t. zmodpN = num(ξ) for some path of length N which to minimal sub-
automaton whose automaton function is z 7→ 2πξz+ b .
I Expanding the distribution for all ξ ∈ R rather than only for s.t.
2πξ ∈ Zp ∩ Q, we put into correspondence to the automaton the ele-
ment

∫
R P(ξ)e−2πixξdξ of Hilbert space.

Basically that’s only an illustration of the approach; many details are
omitted.
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1 p-adic 1-Lipschitz maps=causal maps=automata maps

2 Expanding automata maps from Zp ∩Q to R

3 Some properties of automata maps on R

4 Automata maps on a circle

5 Some physics

6 Concluding remarks
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Some ‘physical’ properties of Cp(R)-functions
The uncertainty principle can be stated in terms of the function g from
the Schwartz class S(R) and its Fourier transform ĝ.

Theorem (H. Weyl, 1931)

Let g ∈ S(R), let ‖g‖2 = 1, ĝ(ξ) =
∫
R g(x)e−2πixξdx. Put

μ =

∫

R
x|g(x)|2dx, σ =

∫

R
(x− μ)2|g(x)|2dx

μ̂ =

∫

R
ξ|ĝ(ξ)|2dξ, σ̂ =

∫

R
(ξ − μ̂)2|ĝ(ξ)|2dξ;

then

σσ̂ ≥
1

4π
.
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Some ‘physical’ properties of Cp(R)-functions
The uncertainty principle can be stated in terms of the function g from
the Schwartz class S(R) and its Fourier transform ĝ.

Theorem (H. Weyl, 1931)

Let g ∈ S(R), let ‖g‖2 = 1, ĝ(ξ) =
∫
R g(x)e−2πixξdx. Put

μ =

∫

R
x|g(x)|2dx, σ =

∫

R
(x− μ)2|g(x)|2dx

μ̂ =

∫

R
ξ|ĝ(ξ)|2dξ, σ̂ =

∫

R
(ξ − μ̂)2|ĝ(ξ)|2dξ;

then

σσ̂ ≥
1

4π
.

If f ∈ Cp(R) then f /∈ S(R); we may try to embed f into S(R) via, e.g, the
mapping S: f(x)→ f(x)e−x2

since if, additionally, f ∈ Z[x] then S(f) ∈ S(R).
Complete description of Cp(R)-functions f s.t. S(f) ∈ Cp(R) is not known.

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 15 / 32



Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata, when output sequence of the
automaton A is input sequence of automaton B resultis an
automaton whose automaton function is fB(fA).
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Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata A and B. This is just a
composition of automata functions: The results in an automaton
whose automaton function is fB(fA).

Direct product of automata: An automaton whose automaton
function is standard direct product of automata functions of
components. Input/output alphabets are direct product of
respective alphabets of components; action is componentwise.
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Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata A and B results in an
automaton whose automaton function is fB(fA).

Direct product of automata: An automaton whose automaton
function is standard direct product of automata functions of
components.

Tensor product of automata. Given two automata whose automata
functions are resp. fA : Zk

p→ Z`p, fB : Zm
p → Zn

p, the result is an
automaton whose automaton function is fA

⊗
fB : Zkm

p → Z`np

m copies of A

` copies of B
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Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata A and B results in an
automaton whose automaton function is fB(fA).

Direct product of automata: An automaton whose automaton
function is standard direct product of automata functions of
components.

Tensor product of automata.

Skew shift (=wreath product, semidirect product)
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Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata.

Direct product of automata

Tensor product of automata.

Skew shift (=wreath product, semidirect product)

I Note that for Cp(R)-functions all above operations can be used to
construct Cp(Rr)-functions. Note also that skew shift is known in er-
godic theory and is often used to construct a dynamical system which
is controlled by another dynamical system: 1-Lipschtz ergodic functions
Zp→ Zp are all exactly of that nature.
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Some ‘physical’ properties of Cp(R)-functions
‘Standard’ operations used in mathematical formalism of QM can be
either interpreted in terms of automata or can be expanded to automata
functions and to Cp(R)-functions.

Sequential composition of automata.

Direct product of automata

Tensor product of automata.

Skew shift (=wreath product, semidirect product)

I It can be proved that the plot of any automaton function f : Zp → Zp

is self-similar: There exists a conformal bijection of any ‘strip’

{(x; f(x)mod 1) : x ∈ [α, β] ⊂ [0, 1]} ⊂ T2

onto the whole torus T2.
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What p?

I At the moment, p = 2 is looking quite suitable since it is a distin-
guished case by the following reasons:

A 1-Lipschitz map f : Z2→ Z2 is measure-preserving if and only if
f(x) = c+ x+ 2 ∙ g(x) where g: Z2→ Z2 is a 1-Lipschitz map,
c ∈ Z2.

A 1-Lipschitz map f : Z2→ Z2 is ergodic if and only if
f(x) = 1+ x+ 2 ∙Δg(x) where g: Z2→ Z2 is a 1-Lipschitz map.

The above conditions are necessary only if p = 2. For other p they are
sufficient only.
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What p?

I At the moment, p = 2 is looking quite suitable since it is a distin-
guished case by the following reasons:

A 1-Lipschitz map f : Z2→ Z2 is measure-preserving if and only if
f(x) = c+ x+ 2 ∙ g(x) where g: Z2→ Z2 is a 1-Lipschitz map,
c ∈ Z2.

A 1-Lipschitz map f : Z2→ Z2 is ergodic if and only if
f(x) = 1+ x+ 2 ∙Δg(x) where g: Z2→ Z2 is a 1-Lipschitz map.

The above conditions are necessary only if p = 2. For other p they are
sufficient only.
I However, since there are more than one Planck unit, it may happen
that to make the model consistent, we must use several different prime
numbers rather than only one.
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What p?

I At the moment, p= 2 is looking quite suitable
I However, since there are more than one Planck unit, it may happen
that to make the model consistent, we must use several different prime
numbers rather than only one.
I To that extend note that there exist automata which are letter-to-
letter transducers for any set of primes, even for all primes: The latter
are exactly the ones whose automata functions are as follows:

f(x) = a0+
∞∑

i=1

ai ∙ lcm(1, 2, . . . , i) ∙

(
x
i

)

;

where all ai ∈ Z. B.t.w., these may lead to the automaton interpretation
of QM over adeles rather than over Zp.
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What p?

I At the moment, p= 2 is looking quite suitable
I However, since there are more than one Planck unit, it may happen
that to make the model consistent, we must use several different prime
numbers rather than only one.
I To that extend note that there exist automata which are letter-to-
letter transducers for any set of primes, even for all primes: The latter
are exactly the ones whose automata functions are as follows:

f(x) = a0+
∞∑

i=1

ai ∙ lcm(1, 2, . . . , i) ∙

(
x
i

)

;

where all ai ∈ Z. B.t.w., these may lead to the automaton interpretation
of QM over adeles rather than over Zp.
I All that shows that the model we are discussing can be adjusted
if necessary. The most ‘physically meaningful’ adjustment would be to
include ‘phase shifts’ into the model aiming to deduce ‘wave functions’.
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Other automata interpretations of QM
The idea to apply automata to construct interpretations of QM has been
already exploited by some other researches. But automata they use are
cellular.

G. ’t Hooft used cellular automata for that purpose, see his
monograph ‘The Cellular Automaton Interpretation of Quantum
Mechanics’, Springer, 2016.

S. Wolfram with co-workers apply cellular automata to construct
what he called a ‘new physics’; the approach which emerges from
his book ‘A new Kind Of Science’, Wolfram Media, 2002.

I Cellular automata are much more powerful computers compared to
automata (=sequential machines) we are discussing. We briefly recall
the hierarchy of automata by their ‘computational power’.
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Other automata interpretations of QM
The idea to apply automata to construct interpretations of QM has been
already exploited by some other researches. But automata they use are
cellular.
I Cellular automata are much more powerful computers compared to
automata (=sequential machines) we are discussing. We briefly recall
the hierarchy of automata by their ‘computational power’.

1 The automata considered in the talk are synchronous automata
(=letter-to-letter transducers, sequential machines). The automata
are the weakest computers of all automata; the functions they
perform constitute the class of all 1-Lipschitz maps Zp→ Zp.
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Other automata interpretations of QM
The idea to apply automata to construct interpretations of QM has been
already exploited by some other researches. But automata they use are
cellular.
I Cellular automata are much more powerful computers compared to
automata (=sequential machines) we are discussing. We briefly recall
the hierarchy of automata by their ‘computational power’.

1 The automata considered in the talk are synchronous automata
(=letter-to-letter transducers, sequential machines). The automata
are the weakest computers of all automata; the functions they
perform constitute the class of all 1-Lipschitz maps Zp→ Zp.

2 More powerful are asynchronous automata (letter-to-word
transducers). Functions they perform constitute the class of
all continuous maps Zp→ Zp.
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Other automata interpretations of QM
The idea to apply automata to construct interpretations of QM has been
already exploited by some other researches. But automata they use are
cellular.
I Cellular automata are much more powerful computers compared to
automata (=sequential machines) we are discussing. We briefly recall
the hierarchy of automata by their ‘computational power’.

1 The automata considered in the talk are synchronous automata
(=letter-to-letter transducers, sequential machines). The automata
are the weakest computers of all automata; the functions they
perform constitute the class of all 1-Lipschitz maps Zp→ Zp.

2 More powerful are asynchronous automata (letter-to-word
transducers). Functions they perform constitute the class of
all continuous maps Zp→ Zp.

3 Cellular automata are equivalent to Turing machines. They can
perform any algorithm; functions Zp→ Zp they perform are
not even defined everywhere on Zp.
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1 p-adic 1-Lipschitz maps=causal maps=automata maps

2 Expanding automata maps from Zp ∩Q to R

3 Some properties of automata maps on R

4 Automata maps on a circle

5 Some physics

6 Concluding remarks
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Last but not least

Felix Klein (1925)

The mathematics of our day seems to be like a great weapons factory
in peace time. The show window is filled with parade pieces whose
ingenious, skillful, eye-appealing execution attracts the connoisseur.
The proper motivation for and purpose of these objects, to battle and
conquer the enemy, has receded to the background of consciousness
to the extent of having been forgotten.
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Last but not least

Felix Klein (1925)

The mathematics of our day seems to be like a great weapons factory
in peace time. The show window is filled with parade pieces whose
ingenious, skillful, eye-appealing execution attracts the connoisseur.
The proper motivation for and purpose of these objects, to battle and
conquer the enemy, has receded to the background of consciousness
to the extent of having been forgotten.

I dare to say that concerning what is discussed in the talk, this is not the
case: Leaving aside whether it is of some importance for QM, the devel-
oped machinery is already being used in cryptography and may probably
be used in ‘digital economy’ since smart contracts are finite automata
interacting in physical time. The latter piece of work was supported by
Russian Foundation for Basic Research grant No 18-20-03124.
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

Vladimir Anashin (MSU-RAS) Causality and time: An ultrametric view p-adics.2021. WEB Conference 20 / 32



Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.

As the set Zp ∩Q of rational p-adic integers is dense both in Zp

and R, there exists a vast class Cp(R) of functions which are both
1-Lipschitz maps Zp→ Zp and continuous functions R→ R; thus
the class Cp(R) can be investigated by combining three tools
simultaneously: Real/complex analysis, p-adic analysis, and
automata theory.
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.

As the set Zp ∩Q of rational p-adic integers is dense both in Zp

and R, there exists a vast class Cp(R) of functions which are both
1-Lipschitz maps Zp→ Zp and continuous functions R→ R; thus
the class Cp(R) can be investigated by combining three tools
simultaneously: Real/complex analysis, p-adic analysis, and
automata theory.
The class Cp(R) has the following notable properties:

Functions from Cp(R) are completely defined by values they take on
any (arbitrarily small) real interval (α, β): Given g, f ∈ Cp(R), if
g(x) = f(x) for all x ∈ (α, β) then f(x) = g(x) for all x ∈ R and
f(z) = g(z) for all z∈ Zp.
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.

As the set Zp ∩Q of rational p-adic integers is dense both in Zp

and R, there exists a vast class Cp(R) of functions which are both
1-Lipschitz maps Zp→ Zp and continuous functions R→ R; thus
the class Cp(R) can be investigated by combining three tools
simultaneously: Real/complex analysis, p-adic analysis, and
automata theory.
The class Cp(R) has the following notable properties:

The class Cp(R) contains all polynomials over Z ∩Q. Therefore any
continuous function R→ R can be uniformly approximated on any
real interval by polynomials from (Zp ∩Q)[x] as well as any
1-Lipschitz (=automaton) function Zp→ Zp can be uniformly
approximated by polynomials from (Zp ∩Q)[x].
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.

As the set Zp ∩Q of rational p-adic integers is dense both in Zp

and R, there exists a vast class Cp(R) of functions which are both
1-Lipschitz maps Zp→ Zp and continuous functions R→ R; thus
the class Cp(R) can be investigated by combining three tools
simultaneously: Real/complex analysis, p-adic analysis, and
automata theory.

Within that approach, it is possible to rigorously deduce some
basic results which belong to standard mathematical formalism of
quantum mechanics and to demonstrate that linearity of operators
emerges from finiteness of epistemic states of a system.
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Conclusion

Causal maps over discrete time are 1-Lipschitz maps Zp→ Zp

The latter maps are exactly the maps which are performed by
synchronous automata over a p-symbol alphabet, the
letter-to-letter transducers.

As the set Zp ∩Q of rational p-adic integers is dense both in Zp

and R, there exists a vast class Cp(R) of functions which are both
1-Lipschitz maps Zp→ Zp and continuous functions R→ R; thus
the class Cp(R) can be investigated by combining three tools
simultaneously: Real/complex analysis, p-adic analysis, and
automata theory.

Within that approach, it is possible to rigorously deduce some
basic results which belong to standard mathematical formalism of
quantum mechanics and to demonstrate that linearity of operators
emerges from finiteness of epistemic states of a system.

Mathematical proofs are based on the only physical assumption
that physical world at Planck distances is discrete and causal.
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Publications
Some (far not all) results mentioned in the talk may be found in:

V. ANASHIN AND A. KHRENNIKOV. Applied Algebraic Dynamics,
Walter de Gruyter GmbH & Co., Berlin—N.Y., 2009.

V. S. ANASHIN. Quantization causes waves: Smooth finitely
computable functions are affine. p-Adic Numbers, Ultrametric
Analysis Appl.., 7(3):169–227, 2015.

V. Anashin. Discreteness causes waves. Facta Universitatis,
14(6):143–196, 2016.

V. ANASHIN. The non-Archimedean theory of discrete systems.
Math. Comp. Sci., 6(4):375–393, 2012.

V. ANASHIN. The p-adic theory of automata functions (preprint).
https://www.researchgate.net/publication/
345733138_THE_p-ADIC_THEORY_OF_AUTOMATA_FUNCTIONS

The rest of results are under preparation for publication.
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Thank you!
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α(f) = 0.
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α(f) = 0.
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p = 2: f(x) = 1+ x+ 4x2;
α(f) = 1.
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1

4

0|0

0|0

0|0

1|0

0|1

0|11|1

1|1
1|0

1|1

5 2 3

Figure: Example state diagram of a 5-state automaton with two-letter
input/output alphabets {0, 1}. Initial state is 1. The automaton function is
multiplication by 5 of numbers represented in base-2 expansion.
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1|0

0|0

1|1

0|1

0|0

0|01|1

3 2 1

0
1|1

4

7

0|0

0|0

0|0

1|0

0|1

0|11|1

1|1
1|0

1|1

8 5 6

Figure: Example state diagram of an automaton with two minimal
sub-automata. Initial state is 0.
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f(z) = 11
15z+ 1

21, p= 2.
As gcd(15, 21) = 3, the multiplicative order of 2 modulo 21

gcd(15,21) =
21
3 = 7

is 3; this is the number of windings in the torus link.
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f1(z) = −2z+ 1
3; f2(z) = 3

5z+ 2
7, (p= 2).
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5z+ 2
7, (p= 2).
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u(z) = 3z, v(z) = 5z (z∈ Z2)
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f(z) = 2
7, p= 2
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