On non-Archimedean valued fields: a survey of algebraic, topological and metric structures, analysis and applications

Khodr Shamseddine
University of Manitoba
(1) Non-Archimedean Valued Fields
(2) Ultrametric Spaces
(3) Examples of Non-Archimedean Valued Fields

- The p-adic Fields
- Ordered Fields
- Hahn Fields
- Levi-Civita Fields
(4) The Levi-Civita Fields \mathscr{R} and \mathscr{C}

Outline for Section 2

(1) Non-Archimedean Valued Fields
(2) Ultrametric Spaces
(3) Examples of Non-Archimedean Valued Fields

- The p-adic Fields
- Ordered Fields
- Hahn Fields
- Levi-Civita Fields
(4) The Levi-Civita Fields \mathscr{R} and \mathscr{C}

Valued Fields

Valuation: Let K be a field. A valuation on K is a map $\cdot \mid: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
© $|a+b| \leq|a|+|z|$ for all $a, b \in 1$ (triangle inequality).
The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map $|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;

- ' $a+b \mid$ ' $|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map
$|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
(5) $|a+b| \leq|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair ($K, 1$, 1) is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$,
is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map
$|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
(3) $|a+b| \leq|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$,
is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map
$|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
(3) $|a+b| \leq|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$,
is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map
$|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
(3) $|a+b| \leq|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$
is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Valued Fields

Valuation: Let K be a field. A valuation on K is a map
$|\cdot|: K \rightarrow[0, \infty)$ that satisfies the following properties
(1) $|a|=0$ if and only if $a=0$;
(2) $|a b|=|a||b|$ for all $a, b \in K$;
(3) $|a+b| \leq|a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K,|\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $\left|K^{*}\right|=\left\{|a|: a \in K^{*}\right\}$, where $K^{*}=K \backslash\{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Non-Archimedean Valued Fields

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(c) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(4) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set
$\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(a $\mid a+u \leq \max \left\{\left.\left.\right|^{\prime}\right|^{\prime}, \mid b 1\right\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;
a $|m .1|<1$ for all $n \in \mathbb{N}$.

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set
$\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(2) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;

- $|n .1| \leq 1$ for all $n \in \mathbb{N}$.

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set $\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(2) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
a $|a+b|-\max \{a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;
(4) $|n .1| \leq 1$ for all $n \in \mathbb{N}$.

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set $\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(2) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;
($|n .1| \leq 1$ for all $n \in \mathbb{N}$.

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set $\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(2) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;

Non-Archimedean Valued Fields

Let $K \equiv(K,|\cdot|)$ be a valued field.
Definition: We say that K is non-Archimedean if the set $\{n .1: n \in \mathbb{N}\}:=\{1,1+1,1+1+1, \ldots\}$ is bounded in K, i.e.

$$
\sup _{n \in \mathbb{N}}\{|n .1|: n \in \mathbb{N}\}<\infty
$$

Otherwise, we say that K is Archimedean.
Theorem: The following are equivalent
(1) K is non-Archimedean;
(2) $|a+b| \leq \max \{|a|,|b|\}$ for all $a, b \in K$ (the strong triangle inequality);
(3) $|a+b|=\max \{|a|,|b|\}$ for all $a, b \in K$ satisfying $|a| \neq|b|$;
(4) $|n .1| \leq 1$ for all $n \in \mathbb{N}$.

Outline for Section 3

(1) Non-Archimedean Valued Fields
(2) Ultrametric Spaces
(3) Examples of Non-Archimedean Valued Fields

- The p-adic Fields
- Ordered Fields
- Hahn Fields
- Levi-Civita Fields
(4) The Levi-Civita Fields \mathscr{R} and \mathscr{C}

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z)<\Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

$$
\begin{aligned}
B(a, r) & :=\{x \in X: \Delta(x, a) \leq r\} \text { and } \\
B\left(a, r^{-}\right) & :=\{x \in X: \Delta(x, a)<r\} .
\end{aligned}
$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by \triangle.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

$$
\begin{aligned}
B(a, r) & :=\{x \in X: \Delta(x, a) \leq r\} \text { and } \\
B\left(a, r^{-}\right) & :=\{x \in X: \Delta(x, a)<r\} .
\end{aligned}
$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by Δ.

Metric Spaces

A metric on a set X is a map $\Delta: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$
(i) $\Delta(x, y)=0$ if and only if $x=y$;
(ii) $\Delta(x, y)=\Delta(y, x)$;
(iii) $\Delta(x, z) \leq \Delta(x, y)+\Delta(y, z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.
For $a \in X$, and $r>0$ in \mathbb{R} we set

$$
\begin{aligned}
B(a, r) & :=\{x \in X: \Delta(x, a) \leq r\} \text { and } \\
B\left(a, r^{-}\right) & :=\{x \in X: \Delta(x, a)<r\} .
\end{aligned}
$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an $r>0$ in \mathbb{R} such that $B\left(a, r^{-}\right) \subset U$.
The collection of open sets forms a topology on X which is called the topology induced by Δ.

Ultrametric Spaces

Definition: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

Theorem: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the Isosceles Triangle Principle:

Ultrametric Spaces

Definition: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$
\Delta(x, z) \leq \max \{\Delta(x, y), \Delta(y, z)\} \forall x, y, z \in X .
$$

Theorem: Let (X, Δ) be a metric space. Then Δ is an ultrametric if
and only if it satisfies the Isosceles Triangle Principle:
For all $x, y, z \in X$

Ultrametric Spaces

Definition: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$
\Delta(x, z) \leq \max \{\Delta(x, y), \Delta(y, z)\} \forall x, y, z \in X
$$

Theorem: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the Isosceles Triangle Principle:

For all $x, y, z \in X$

Ultrametric Spaces

Definition: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$
\Delta(x, z) \leq \max \{\Delta(x, y), \Delta(y, z)\} \forall x, y, z \in X
$$

Theorem: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the Isosceles Triangle Principle:

For all $x, y, z \in X$

$$
\Delta(x, y) \neq \Delta(y, z) \Rightarrow \Delta(x, z)=\max \{\Delta(x, y), \Delta(y, z)\}
$$

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K$, be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty) .(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archirnedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume (T, , I) is a hon-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by satisfies the strong triangle inequality.
- We have this way all examples of ultrame tric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K,|\cdot|)$ be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty),(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume $(K,|\cdot|)$ is a non-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by
satisfies the strong triangle inequality.
- We have this way all examples of ultrametric spaces since each
ultrametric space can isometrically be embedded into a
non-Archimedean valued field.

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K,|\cdot|)$ be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty),(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume $(K,|\cdot|)$ is a non-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by
satisfies the strong triangle inequality.
- We have this way all examples of ultrametric spaces since each
ultrametric space can isometrically be embedded into a
non-Archimedean valued field.

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K,|\cdot|)$ be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty),(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume $(K,|\cdot|)$ is a non-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by
satisfies the strong triangle inequality.
- M/e have this may all evamnles of ultrametric spaces since each ultrametric space can isometrically be embedded into a
non-Archimedean valued field.

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K,|\cdot|)$ be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty),(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume $(K,|\cdot|)$ is a non-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
- We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv(K,|\cdot|)$ be a valued field.

- The map $\Delta: K \times K \rightarrow[0, \infty),(a, b) \mapsto|a-b|$, is a metric on K that induces a topology on K and makes K a topological field. We say that $(K,|\cdot|)$ is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C}. Thus, almost all complete valued fields are non-Archimedean.
- Assume $(K,|\cdot|)$ is a non-Archimedean valued field. Then
- $(K,|\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
- We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other. - If two balls B_{1} and B_{2} are disjoint, then
$\operatorname{dist}\left(B_{1}, B_{2}\right)-\Delta(x, y)$ for each $x \in B_{1}, y \in B_{2}$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other. - If two balls B_{1} and B_{2} are disjoint, then dist $\left(B_{1}, B_{2}\right)=\Delta(x, y)$ for each $x \in B_{1}, y \in B_{2}$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
- If two balls B_{1} and B_{2} are disjoint, then
$\operatorname{dist}\left(B_{1}, B_{2}\right)=\Delta(x, y)$ for each $x \in B_{1}, y \in B_{2}$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
- If two balls B_{1} and B_{2} are disjoint, then
dist $\left(B_{1}, B_{2}\right)=\Delta(x, y)$ for each $x \in B_{1}, y \in B_{2}$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
- If two balls B_{1} and B_{2} are disjoint, then
$\operatorname{dist}\left(B_{1}, B_{2}\right)=\triangle(x, y)$ for each $x \in B_{1}, y \in B_{2}$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
- If two balls B_{1} and B_{2} are disjoint, then

$$
\operatorname{dist}\left(B_{1}, B_{2}\right)=\Delta(x, y) \text { for each } x \in B_{1}, y \in B_{2}
$$

- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.

(X, Δ) is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if $\lim _{n \rightarrow \infty} \Delta\left(x_{n}, x_{n+1}\right)=0$.
- A student's dream come true:

Given a_{1}, a_{2}, \ldots in a complete ultrametric space
(non-Archimedean valued field) K, then

- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.

$$
\Downarrow
$$

(X, Δ) is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if
- A student's dream come true:

Given a_{1}, a_{2}, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then

- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.
\Downarrow
(X, Δ) is totally disconnected.
- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if

A student's dream come true:
Given a_{1}, a_{2}, \ldots in a complete ultrametric space
(non-Archimedean valued field) K, then

- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.
\Downarrow
(X, Δ) is totally disconnected.
- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if $\lim _{n \rightarrow \infty} \Delta\left(x_{n}, x_{n+1}\right)=0$.
- A student's dream come true: Given a_{1}, a_{2}, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then
- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.
\Downarrow
(X, Δ) is totally disconnected.
- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if $\lim _{n \rightarrow \infty} \Delta\left(x_{n}, x_{n+1}\right)=0$.
- A student's dream come true:

Given a_{1}, a_{2}, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then

- The topology induced by Δ is zero-dimensional, i.e. there is a base of the topology consisting of clopen sets.
\Downarrow
(X, Δ) is totally disconnected.
- There are no new values of an ultrametric after completion.
- A sequence $\left(x_{n}\right)_{n}$ in X is Cauchy if and only if $\lim _{n \rightarrow \infty} \Delta\left(x_{n}, x_{n+1}\right)=0$.
- A student's dream come true:

Given a_{1}, a_{2}, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then

$$
\sum_{n=1}^{\infty} a_{n} \text { converges in } K \Longleftrightarrow \lim _{n \rightarrow \infty} a_{n}=0
$$

Spherical completeness

Definition: An ultrametric space is called spherically complete if each nested sequence of balls has a non-empty intersection.

> Remark: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

> A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

> Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

Spherical completeness

Definition: An ultrametric space is called spherically complete if each nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

Spherical completeness

Definition: An ultrametric space is called spherically complete if each nested sequence of balls has a non-empty intersection.
Remark: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space.
If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is
spherically complete.

Spherical completeness

Definition: An ultrametric space is called spherically complete if each nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

Two Important Attributes of Spherically Complete Ultrametric Spaces

(1) A stronger version of the fixed point theorem: every shrinking map of a spherically complete ultrametric space has a unique fixed point.
(3) Existence of best approximations: Let $Y \neq \emptyset$ be a spherically complete ultrametric space embedded in an ultrametric space X. Then each $x \in X$ has a best approximation in Y,i.e. $\min \{\Delta(y, x): y \in Y\}$ exists.

Two Important Attributes of Spherically Complete Ultrametric Spaces

(1) A stronger version of the fixed point theorem: every shrinking map of a spherically complete ultrametric space has a unique fixed point.
(2) Existence of best approximations: Let $Y \neq \emptyset$ be a spherically complete ultrametric space embedded in an ultrametric space X. Then each $x \in X$ has a best approximation in Y, i.e. $\min \{\Delta(y, x): y \in Y\}$ exists.

Outline for Section 4

(1) Non-Archimedean Valued Fields

(2) Ultrametric Spaces
(3) Examples of Non-Archimedean Valued Fields

- The p-adic Fields
- Ordered Fields
- Hahn Fields
- Levi-Civita Fields
(4) The Levi-Civita Fields \mathscr{R} and \mathscr{C}

The p-adic Fields

Let p be a prime number.

- The p-adic valuation on \mathbb{Q} is determined by

$$
|a|_{p}=p^{-r} \text { if } a=\frac{m}{n} p^{r} \text { and } m, n \text { not divisible by } p .
$$

- The completion of $\left(\mathbb{Q},|\cdot|_{p}\right)$ is called $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, the field of the p-adic numbers. Its value group is $\left\{p^{n}: n \in \mathbb{Z}\right\}$.
- \mathbb{Q}_{p} is locally compact and hence spherically complete; also separable.

The p-adic Fields

Let p be a prime number.

- The p-adic valuation on \mathbb{Q} is determined by

$$
|a|_{p}=p^{-r} \text { if } a=\frac{m}{n} p^{r} \text { and } m, n \text { not divisible by } p
$$

- The completion of $\left(\mathbb{Q},|\cdot|_{p}\right)$ is called $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, the field of the p-adic numbers. Its value group is $\left\{p^{n}: n \in \mathbb{Z}\right\}$.
- \mathbb{Q}_{p} is locally compact and hence spherically complete; also separable.

The p-adic Fields

Let p be a prime number.

- The p-adic valuation on \mathbb{Q} is determined by

$$
|a|_{p}=p^{-r} \text { if } a=\frac{m}{n} p^{r} \text { and } m, n \text { not divisible by } p .
$$

- The completion of $\left(\mathbb{Q},|\cdot|_{p}\right)$ is called $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, the field of the p-adic numbers. Its value group is $\left\{p^{n}: n \in \mathbb{Z}\right\}$.
- \mathbb{Q}_{p} is locally compact and hence spherically complete; also separable.

The p-adic Fields

Let p be a prime number.

- The p-adic valuation on \mathbb{Q} is determined by

$$
|a|_{p}=p^{-r} \text { if } a=\frac{m}{n} p^{r} \text { and } m, n \text { not divisible by } p .
$$

- The completion of $\left(\mathbb{Q},|\cdot|_{p}\right)$ is called $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, the field of the p-adic numbers. Its value group is $\left\{p^{n}: n \in \mathbb{Z}\right\}$.
- \mathbb{Q}_{p} is locally compact and hence spherically complete; also separable.

The p-adic Fields

Let p be a prime number.

- The p-adic valuation on \mathbb{Q} is determined by

$$
|a|_{p}=p^{-r} \text { if } a=\frac{m}{n} p^{r} \text { and } m, n \text { not divisible by } p .
$$

- The completion of $\left(\mathbb{Q},|\cdot|_{p}\right)$ is called $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$, the field of the p-adic numbers. Its value group is $\left\{p^{n}: n \in \mathbb{Z}\right\}$.
- \mathbb{Q}_{p} is locally compact and hence spherically complete; also separable.
- \mathbb{Q}_{p} is not algebraically closed. $|\cdot|_{p}$ can be extended uniquely to the algebraic closure \mathbb{Q}_{p}^{a}; and the completion of $\left(\mathbb{Q}_{p}^{a},|\cdot|_{p}\right)$ is called \mathbb{C}_{p}, the field of the p-adic complex numbers.

- \mathbb{C}_{p} is no longer locally compact, but separable and algebraically closed. Its value group is

so the valuation is dense.

- \mathbb{C}_{p} is not spherically complete!
- \mathbb{Q}_{p} is not algebraically closed. $|\cdot|_{p}$ can be extended uniquely to the algebraic closure \mathbb{Q}_{p}^{a}; and the completion of $\left(\mathbb{Q}_{p}^{a},|\cdot|_{p}\right)$ is called \mathbb{C}_{p}, the field of the p-adic complex numbers.
- \mathbb{C}_{p} is no longer locally compact, but separable and algebraically closed. Its value group is

$$
\left\{p^{r}: r \in \mathbb{Q}\right\}
$$

so the valuation is dense.

- \mathbb{C}_{p} is not spherically complete!
- \mathbb{Q}_{p} is not algebraically closed. $|\cdot|_{p}$ can be extended uniquely to the algebraic closure \mathbb{Q}_{p}^{a}; and the completion of $\left(\mathbb{Q}_{p}^{a},|\cdot|_{p}\right)$ is called \mathbb{C}_{p}, the field of the p-adic complex numbers.
- \mathbb{C}_{p} is no longer locally compact, but separable and algebraically closed. Its value group is

$$
\left\{p^{r}: r \in \mathbb{Q}\right\}
$$

so the valuation is dense.

- \mathbb{C}_{p} is not spherically complete!

Ordered Fields

Let K be an ordered field.

- For $x, y \in K^{*}$, we say that x and y are comparable and we write $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $|x|_{0}<n|y|_{0}$ and $|y|_{0}<m|x|_{0}$, where

$$
|a|_{0}:=\max \{a,-a\}= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

- \sim is an equivalence relation on K^{*}. The equivalence class of $x \in K^{*}$ is denoted by $[x]$; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_{K}.
- G_{K} is an ordered abelian group under the order \prec and addition + defined as follows: for every $x, y \in K^{*}$,
(1) $[x] \prec[y] \Longleftrightarrow \forall n \in \mathbb{N}, n|y|_{0}<|x|_{0}$; and
(2) $[x]+[y]:=[x y]$.
$\begin{array}{lll}\text { The neutral element is }[1 K], \text { and }-[x]=[x-1] \text { for } x \in K^{*} \\ \text { odr Shamseddine }(U \text { of } \mathbf{M}) \quad \text { Non-Archimedean Fields and Applications } & \text { March } 9,2021 \quad 17 / 39\end{array}$

Ordered Fields

Let K be an ordered field.

- For $x, y \in K^{*}$, we say that x and y are comparable and we write $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $|x|_{0}<n|y|_{0}$ and $|y|_{0}<m|x|_{0}$, where

- \sim is an equivalence relation on K^{*}. The equivalence class of $x \in K^{*}$ is denoted by $[x]$; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_{K}.
- G_{K} is an ordered abelian group under the order \prec and addition + defined as follows: for every $x, y \in K^{*}$,
(1) $[x] \prec[y] \longleftrightarrow \forall n \in \mathbb{N}, n|y|_{0}<|x| 0$; and

The neutral element is $\left[1_{K}\right]$, and -

Ordered Fields

Let K be an ordered field.

- For $x, y \in K^{*}$, we say that x and y are comparable and we write $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $|x|_{0}<n|y|_{0}$ and $|y|_{0}<m|x|_{0}$, where

$$
|a|_{0}:=\max \{a,-a\}= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

- \sim is an equivalence relation on K^{*}. The equivalence class of $x \in K^{*}$ is denoted by $[x]$; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_{K}.
- G_{K} is an ordered abelian group under the order \prec and addition defined as follows: for every $x, y \in K^{*}$,

Ordered Fields

Let K be an ordered field.

- For $x, y \in K^{*}$, we say that x and y are comparable and we write $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $|x|_{0}<n|y|_{0}$ and $|y|_{0}<m|x|_{0}$, where

$$
|a|_{0}:=\max \{a,-a\}= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

- \sim is an equivalence relation on K^{*}. The equivalence class of $x \in K^{*}$ is denoted by $[x]$; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_{K}.
- G_{K} is an ordered abelian group under the order \prec and addition defined as follows: for every x

Ordered Fields

Let K be an ordered field.

- For $x, y \in K^{*}$, we say that x and y are comparable and we write $x \sim y$ if there exist $n, m \in \mathbb{N}$ such that $|x|_{0}<n|y|_{0}$ and $|y|_{0}<m|x|_{0}$, where

$$
|a|_{0}:=\max \{a,-a\}= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

- ~ is an equivalence relation on K^{*}. The equivalence class of $x \in K^{*}$ is denoted by $[x]$; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_{K}.
- G_{K} is an ordered abelian group under the order \prec and addition + defined as follows: for every $x, y \in K^{*}$,
(1) $[x] \prec[y] \Longleftrightarrow \forall n \in \mathbb{N}, n|y|_{0}<|x|_{0}$; and
(2) $[x]+[y]:=[x y]$.

The neutral element is $\left[1_{K}\right]$, and $-[x]=\left[x^{-1}\right]$ for $x \in K^{*}$.

- Definition: An ordered field K is Archimedean if $G_{K}=\left\{\left[1_{K}\right]\right\}$, that is when any two elements in K^{*} are comparable.
- Each Archimedean ordered field can be embedded in \mathbb{R}.
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".
- Definition: An ordered field K is Archimedean if $G_{K}=\left\{\left[1_{K}\right]\right\}$, that is when any two elements in K^{*} are comparable.
- Each Archimedean ordered field can be embedded in \mathbb{R}.
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".
- Definition: An ordered field K is Archimedean if $G_{K}=\left\{\left[1_{K}\right]\right\}$, that is when any two elements in K^{*} are comparable.
- Each Archimedean ordered field can be embedded in \mathbb{R}.
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".
- Definition: Let E / K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_{E} and G_{K} are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- Definition: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_{K}, then we say that K is of type G and G is called an Archimedean group of K.
- The simplest Archimedean complete field is \mathbb{R}, since it is (up to isomorphism) the only Archimedean complete, ordered field of type $\{0\}$. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.
- Definition: Let E / K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_{E} and G_{K} are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- Definition: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_{K}, then we say that K is of type G and G is called an Archimedean group of K.
- The simplest Archimedean complete field is \mathbb{R}, since it is (up to isomorphism) the only Archimedean complete, ordered field of type $\{0\}$. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.
- Definition: Let E / K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_{E} and G_{K} are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- Definition: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_{K}, then we say that K is of type G and G is called an Archimedean group of K.
- The simplest Archimedean complete field is \mathbb{R}, since it is (up to isomorphism) the only Archimedean complete, ordered field of type $\{0\}$. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.

General Hahn Fields

- Theorem: Let K be a field (not necessarily ordered) and G an ordered abelian group. The set

$$
K((G)):-\{f: G \rightarrow K: \operatorname{supp}(f) \text { is well-ordered }\}
$$

where $\operatorname{supp}(f):=\{x \in G: f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

- Fields of the form $K((G))$ are called general Hahn fields.
- When K is an ordered field we can define an order on $K((G))$. Definition: Let K be an ordered field and consider
$\lambda: K((G))^{*} \rightarrow G, \lambda(f)=\min \{\operatorname{supp}(f)\}$. For $f, g \in K((G))$ we define:

$$
f<g \Leftrightarrow f \neq g \text { and }(f-g)(\lambda(f-g))<0 .
$$

Then $(K((G)), \leq)$ is an ordered field.

General Hahn Fields

- Theorem: Let K be a field (not necessarily ordered) and G an ordered abelian group. The set

$$
K((G)):=\{f: G \rightarrow K: \operatorname{supp}(f) \text { is well-ordered }\}
$$

where $\operatorname{supp}(f):=\{x \in G: f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:
(1) $(f+g)(x):=f(x)+g(x)$,
(2) $f g(x):=\sum_{a+b=x} f(a) g(b)$.

- Fields of the form $K((G))$ are called general Hahn fields.
- When K is an ordered field we can define an order on $K((G))$

Definition: Let K he an ordered field and consider
$\lambda: K((G))^{*} \rightarrow G, \lambda(f)=\min \{\operatorname{supp}(f)\}$. For $f, g \in K((G))$ we
define:

Then $(K((G)), \leq)$ is an ordered field.

General Hahn Fields

- Theorem: Let K be a field (not necessarily ordered) and G an ordered abelian group. The set

$$
K((G)):=\{f: G \rightarrow K: \operatorname{supp}(f) \text { is well-ordered }\}
$$

where $\operatorname{supp}(f):=\{x \in G: f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

$$
\begin{aligned}
& \text { (1) }(f+g)(x):=f(x)+g(x), \\
& \text { (2) } f g(x):=\sum_{a+b=x} f(a) g(b) \text {. }
\end{aligned}
$$

- Fields of the form $K((G))$ are called general Hahn fields.
- When K is an ordered field we can define an order on $K((G))$ Definition: Let K be an ordered field and consider $\lambda: K((G))^{*} \rightarrow G, \lambda(f)=\min \{\operatorname{supp}(f)\}$. For $\left.f, g \in K(\mid G)\right)$ we define:

Then $(K((G)), \leq)$ is an ordered field.

General Hahn Fields

- Theorem: Let K be a field (not necessarily ordered) and G an ordered abelian group. The set

$$
K((G)):=\{f: G \rightarrow K: \operatorname{supp}(f) \text { is well-ordered }\}
$$

where $\operatorname{supp}(f):=\{x \in G: f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

$$
\begin{aligned}
& \text { (1) }(f+g)(x):=f(x)+g(x), \\
& \text { (2) } f g(x):=\sum_{a+b=x} f(a) g(b) .
\end{aligned}
$$

- Fields of the form $K((G))$ are called general Hahn fields.
- When K is an ordered field we can define an order on $K((G))$.

Definition: Let K be an ordered field and consider
define:

General Hahn Fields

- Theorem: Let K be a field (not necessarily ordered) and G an ordered abelian group. The set

$$
K((G)):=\{f: G \rightarrow K: \operatorname{supp}(f) \text { is well-ordered }\},
$$

where $\operatorname{supp}(f):=\{x \in G: f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

$$
\begin{aligned}
& \text { (1) }(f+g)(x):=f(x)+g(x) \text {, } \\
& \text { (2) } f g(x):=\sum_{a+b=x} f(a) g(b) .
\end{aligned}
$$

- Fields of the form $K((G))$ are called general Hahn fields.
- When K is an ordered field we can define an order on $K((G))$.

Definition: Let K be an ordered field and consider
$\lambda: K((G))^{*} \rightarrow G, \lambda(f)=\min \{\operatorname{supp}(f)\}$. For $f, g \in K((G))$ we define:

$$
f<g \Leftrightarrow f \neq g \text { and }(f-g)(\lambda(f-g))<0 .
$$

Then $(K((G)), \leq)$ is an ordered field.

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.
(1) Hahn's Embedding Theorem: If K is an ordered field, then for every Archimedean group G of K, there exists an order-preserving field monomorphism σ from K into $\mathbb{R}((G))$ such that $\mathbb{R}((G))$ is an Archimedean extension of $\sigma(K)$.
(2) Hahn's Completeness Theorem: If G is an ordered abelian group then the field $\mathbb{R}((G))$ is (up to isomorphism) the only Archimedean complete, ordered field of type G.

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.
(1) Hahn's Embedding Theorem: If K is an ordered field, then for every Archimedean group G of K, there exists an order-preserving field monomorphism σ from K into $\mathbb{R}((G))$ such that $\mathbb{R}((G))$ is an Archimedean extension of $\sigma(K)$.
(2) Hahn's Completeness Theorem: If G is an ordered abelian group then the field $\mathbb{R}((G))$ is (up to isomorphism) the only Archimedean complete, ordered field of type G.

Hahn Fields

Definition: A Hahn field is a general Hahn field $K((G))$ for which G is a subgroup of $(\mathbb{R},+)$ and K is any field.

Theorem: Let G be a subgroup of $(\mathbb{R},+)$ and K any field. If the map $: K((G)) \rightarrow \mathbb{R}$ is defined by

then $(K((G)),| |)$ is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group $\left|K((G))^{*}\right|=\left\{e^{g} \in \mathbb{R}: g \in G\right\}$.

Hahn Fields

Definition: A Hahn field is a general Hahn field $K((G))$ for which G is a subgroup of $(\mathbb{R},+)$ and K is any field.

Theorem: Let G be a subgroup of $(\mathbb{R},+)$ and K any field. If the map $K((G)) \rightarrow \mathbb{R}$ is defined by

then $(K((G)),| |)$ is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group

Hahn Fields

Definition: A Hahn field is a general Hahn field $K((G))$ for which G is a subgroup of $(\mathbb{R},+)$ and K is any field.

Theorem: Let G be a subgroup of $(\mathbb{R},+)$ and K any field. If the map $: K((G)) \rightarrow \mathbb{R}$ is defined by

$$
|f|:= \begin{cases}e^{-\lambda(f)} & \text { if } f \neq 0 \\ 0 & \text { if } f=0\end{cases}
$$

then $(K((G)),| |)$ is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group $\left|K((G))^{*}\right|=\left\{e^{g} \in \mathbb{R}: g \in G\right\}$.

Levi-Civita Fields

Let K be any field and let G be a subgroup of $(\mathbb{R},+)$. Then

$L[G, K]:=\{f: G \rightarrow K \mid \operatorname{supp}(f) \cap(-\infty, n]$ is finite for every $n \in \mathbb{Z}\}$
is a subfield of $K((G))$.

- When we restrict the valuation of $K((G))$ to $L[G, K]$, the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group

- Fields of the form $L[G, K]$ are called Levi-Civita fields.

Levi-Civita Fields

Let K be any field and let G be a subgroup of $(\mathbb{R},+)$. Then
$L[G, K]:=\{f: G \rightarrow K \mid \operatorname{supp}(f) \cap(-\infty, n]$ is finite for every $n \in \mathbb{Z}\}$
is a subilield of $K((G))$.

- When we restrict the valuation of $K((G))$ to $L[G, K]$, the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group $\left|L[G, K]^{*}\right|=\left\{e^{g}: g \in G\right\}$.
- Fields of the form IIG TK1 ate called Levi-Civita fields.

Levi-Civita Fields

Let K be any field and let G be a subgroup of $(\mathbb{R},+)$. Then
$L[G, K]:=\{f: G \rightarrow K \mid \operatorname{supp}(f) \cap(-\infty, n]$ is finite for every $n \in \mathbb{Z}\}$
is a subfield of $K((G))$.

- When we restrict the valuation of $K((G))$ to $L[G, K]$, the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group $\left|L[G, K]^{*}\right|=\left\{e^{g}: g \in G\right\}$.
- Fields of the form $L[G, K]$ are called Levi-Civita fields.

Levi-Civita Fields

Let K be any field and let G be a subgroup of $(\mathbb{R},+)$. Then
$L[G, K]:=\{f: G \rightarrow K \mid \operatorname{supp}(f) \cap(-\infty, n]$ is finite for every $n \in \mathbb{Z}\}$
is a subfield of $K((G))$.

- When we restrict the valuation of $K((G))$ to $L[G, K]$, the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group $\left|L[G, K]^{*}\right|=\left\{e^{g}: g \in G\right\}$.
- Fields of the form $L[G, K]$ are called Levi-Civita fields.

Levi-Civita Fields

Let K be any field and let G be a subgroup of $(\mathbb{R},+)$. Then
$L[G, K]:=\{f: G \rightarrow K \mid \operatorname{supp}(f) \cap(-\infty, n]$ is finite for every $n \in \mathbb{Z}\}$
is a subfield of $K((G))$.

- When we restrict the valuation of $K((G))$ to $L[G, K]$, the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group $\left|L[G, K]^{*}\right|=\left\{e^{g}: g \in G\right\}$.
- Fields of the form $L[G, K]$ are called Levi-Civita fields.

Lemma: Let K be a field and let $d: \mathbb{Q} \rightarrow K$ be the function defined by

$$
d(x):= \begin{cases}1 & \text { if } x=1 \\ 0 & \text { if } x \neq 1 .\end{cases}
$$

Then d is an element of the field $L[\mathbb{Q}, K]$; and for any $r \in \mathbb{Q}$, we have that

$$
d^{r}(x)= \begin{cases}1 & \text { if } x=r \\ 0 & \text { if } x \neq r .\end{cases}
$$

Every nonzero element $f \in L[\mathbb{Q}, K]$ is the sum of a convergent generalized power series with respect to the valuation on $L[\mathbb{Q}, K]$, specificalily:

Lemma: Let K be a field and let $d: \mathbb{Q} \rightarrow K$ be the function defined by

$$
d(x):= \begin{cases}1 & \text { if } x=1 \\ 0 & \text { if } x \neq 1 .\end{cases}
$$

Then d is an element of the field $L[\mathbb{Q}, K]$; and for any $r \in \mathbb{Q}$, we have that

$$
d^{r}(x)= \begin{cases}1 & \text { if } x=r \\ 0 & \text { if } x \neq r .\end{cases}
$$

Every nonzero element $f \in L[\mathbb{Q}, K]$ is the sum of a convergent generalized power series with respect to the valuation on $L[\mathbb{Q}, K]$, specifically:

$$
f=\sum_{r \in \mathbb{Q}} f(r) d^{r}=\sum_{r \in \operatorname{supp}(f)} f(r) d^{r} .
$$

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then

O The following are equivalent:

- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- $L[G, K]$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K(G)$ and $L G, K$ are of type G.

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then
(1) The following are equivalent:

- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- I[G, $K<1$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K((G))$ and $L[G, K]$ are of type G.

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then
(1) The following are equivalent:

- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- $L[G, K]$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K((G))$ and $L[G, K]$ are of type G.

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then
(1) The following are equivalent:

- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- $L[G, K]$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K((G))$ and $L[G, K]$ are of type G.

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then

- The following are equivalent:
- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- $L[G, K]$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K((G))$ and $L[G, K]$ are of type G.

Theorem: Let K be any field and G a subgroup of $(\mathbb{R},+)$. Then
(1) The following are equivalent:

- $K((G))$ and $L[G, K]$ coincide.
- G is discrete.
- $L[G, K]$ is spherically complete.
(2) If K is an ordered field, then $K((G))$ is an Archimedean extension of $L[G, K]$ with respect to the order. If, in addition, K is Archimedean then both $K((G))$ and $L[G, K]$ are of type G.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abolian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $I[$ In $K 1$ is real closed if and only if K is real closed

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.
\Downarrow
The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.
\Downarrow
The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Some general Hahn fields are real closed.

- If K is a field and G an ordered abelian group, then $K((G))$ is real closed if and only if K is real closed and G is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.
\Downarrow
The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i)=\mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q}, \mathbb{R}](i)=L[\mathbb{Q}, \mathbb{C}]$ are algebraically closed.

Outline for Section 5

(1) Non-Archimedean Valued Fields
(2) Ultrametric Spaces
(3) Examples of Non-Archimedean Valued Fields

- The p-adic Fields
- Ordered Fields
- Hahn Fields
- Levi-Civita Fields

4) The Levi-Civita Fields \mathscr{R} and \mathscr{C}

Uniqueness of the Levi-Civita Fields \mathscr{R} and \mathscr{C}

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R}.
- It is small enough so that the \mathscr{R}-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Uniqueness of the Levi-Civita Fields \mathscr{R} and \mathscr{C}

$$
\text { Let } \mathscr{R}:=L[\mathbb{Q}, \mathbb{R}] \text { and } \mathscr{C}:=L[\mathbb{Q}, \mathbb{C}] \text {. }
$$

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R}.

It is small enough so that the m-numbers can be implemented on a computer, thus allowing for computational applications.

- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Uniqueness of the Levi-Civita Fields \mathscr{R} and \mathscr{C}

Let $\mathscr{R}:=L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C}:=L[\mathbb{Q}, \mathbb{C}]$.

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R}.
- It is small enough so that the \mathscr{R}-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Uniqueness of the Levi-Civita Fields \mathscr{R} and \mathscr{C}

$$
\text { Let } \mathscr{R}:=L[\mathbb{Q}, \mathbb{R}] \text { and } \mathscr{C}:=L[\mathbb{Q}, \mathbb{C}] \text {. }
$$

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R}.
- It is small enough so that the \mathscr{R}-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Uniqueness of the Levi-Civita Fields \mathscr{R} and \mathscr{C}

Let $\mathscr{R}:=L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C}:=L[\mathbb{Q}, \mathbb{C}]$.

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R}.
- It is small enough so that the \mathscr{R}-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Neasure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Anplications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Research Work on the Levi-Civita Fields

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathscr{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^{2}$ and \mathscr{R}^{3}
- Optimization
- Operator Theory
- Computational Applications

Differentiation of Computer Functions

> Problem: The need for differentiation tools arises in many fields of science. Usually, formula manipulators like Mathematica do not work everywhere. For example,

is differentiable at 0; but the attempt to compute its derivative using formula manipulators may fail.

Differentiation of Computer Functions

Problem: The need for differentiation tools arises in many fields of science. Usually, formula manipulators like Mathematica do not work everywhere. For example,

$$
f(x)=x^{2} \sqrt{|x|}+\exp (x)
$$

is differentiable at 0 ; but the attempt to compute its derivative using formula manipulators may fail.

Solution: Using the calculus on \mathscr{R}, we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.

Definition (Computer Functions): A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let f be a computer function, let $x_{0} \in \mathbb{R}$ be in the domain of f, and let $s \in \mathscr{R}$. Then f is extendable to $x_{0}+s$ means $x_{0}+s$ belongs to the domain of \bar{f}, the continuation of f to \mathscr{R}

Solution: Using the calculus on \mathscr{R}, we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.
Definition (Computer Functions): A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let f be a computer function, let $x_{0} \in \mathbb{R}$ be in the domain of f, and let $s \in \mathscr{R}$. Then f is extendable to $x_{0}+s$ means $x_{0}+s$ belongs to the domain of \bar{f}, the continuation of f to \mathscr{R}

Solution: Using the calculus on \mathscr{R}, we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.

Definition (Computer Functions): A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let f be a computer function, let $x_{0} \in \mathbb{R}$ be in the domain of f, and let $s \in \mathscr{R}$. Then f is extendable to $x_{0}+s$ means $x_{0}+s$ belongs to the domain of \bar{f}, the continuation of f to \mathscr{R}

Theorem (Standard Form of Computer Functions): Let f be a real computer function with domain of definition D, and let $x_{0} \in D$ be such that f is extendable to $x_{0} \pm d$. Then there exists a real number $\sigma>0$ such that, for $0<x<\sigma$,

$$
f\left(x_{0} \pm x\right)=A_{0}^{ \pm}(x)+\sum_{i=1}^{i^{ \pm}} x^{q_{i}^{ \pm}} A_{i}^{ \pm}(x)
$$

where $A_{i}^{ \pm}(x)$ is a power series with a radius of convergence no smaller than $\sigma, A_{i}^{ \pm}(0) \neq 0$, and $q_{i}^{ \pm} \in \mathbb{Q} \backslash(\mathbb{N} \cup\{0\})$, for $i=1, \ldots, i^{ \pm}$.

Realization of our Goal

Lemma: Let f be a computer function. Then f is defined at x_{0} if and only if $f\left(x_{0}\right)$ can be evaluated on a computer.
Lemma: Let f be a computer function that is defined at the real point x_{0}. Then f is extendable to $x_{0} \pm d$ if and only if $\bar{f}\left(x_{0} \pm d\right)$ can be evaluated on a computer.

Theorem: Let f be a computer function, and let x_{0} be such that $\bar{f}\left(x_{0}-d\right), f\left(x_{0}\right)$, and $\bar{f}\left(x_{0}+d\right)$ are all defined. Then f is continuous at x_{0} if and only if

$$
\bar{f}\left(x_{0}-d\right)==_{0} f\left(x_{0}\right)==_{0} \bar{f}\left(x_{0}+d\right) .
$$

Realization of our Goal

Lemma: Let f be a computer function. Then f is defined at x_{0} if and only if $f\left(x_{0}\right)$ can be evaluated on a computer.

Lemma: Let f be a computer function that is defined at the real point x_{0}. Then f is extendable to $x_{0} \pm d$ if and only if $\bar{f}\left(x_{0} \pm d\right)$ can be evaluated on a computer.

Theorem: Let f be a computer function, and let x_{0} be such that $\bar{f}\left(x_{0}-d\right), f\left(x_{0}\right)$, and $\bar{f}\left(x_{0}+d\right)$ are all defined. Then f is continuous at x_{0} if and only if

$$
\bar{f}\left(x_{0}-d\right)=_{0} f\left(x_{0}\right)==_{0} \bar{f}\left(x_{0}+d\right) .
$$

Realization of our Goal

Lemma: Let f be a computer function. Then f is defined at x_{0} if and only if $f\left(x_{0}\right)$ can be evaluated on a computer.

Lemma: Let f be a computer function that is defined at the real point x_{0}. Then f is extendable to $x_{0} \pm d$ if and only if $\bar{f}\left(x_{0} \pm d\right)$ can be evaluated on a computer.

Theorem: Let f be a computer function, and let x_{0} be such that and $\bar{f}\left(x_{0}+d\right)$ are all defined. Then f is continuous at
x_{0} if and only if
$\bar{f}\left(x_{0}-d\right)={ }_{0} f\left(x_{0}\right)={ }_{0} \bar{f}\left(x_{0}+d\right)$.

Realization of our Goal

Lemma: Let f be a computer function. Then f is defined at x_{0} if and only if $f\left(x_{0}\right)$ can be evaluated on a computer.
Lemma: Let f be a computer function that is defined at the real point x_{0}. Then f is extendable to $x_{0} \pm d$ if and only if $\bar{f}\left(x_{0} \pm d\right)$ can be evaluated on a computer.

Theorem: Let f be a computer function, and let x_{0} be such that $\bar{f}\left(x_{0}-d\right), f\left(x_{0}\right)$, and $\bar{f}\left(x_{0}+d\right)$ are all defined. Then f is continuous at x_{0} if and only if

$$
\bar{f}\left(x_{0}-d\right)={ }_{0} f\left(x_{0}\right)={ }_{0} \bar{f}\left(x_{0}+d\right)
$$

Theorem: Let f be a computer function that is continuous at x_{0}. Then f is m times differentiable at x_{0} if and only if

$$
\bar{f}\left(x_{0}-d\right)=_{m} f\left(x_{0}\right)+\sum_{j=1}^{m} a_{j}^{-} d^{j}
$$

and

$$
\bar{f}\left(x_{0}+d\right)={ }_{m} f\left(x_{0}\right)+\sum_{j=1}^{m} a_{j}^{+} d^{j},
$$

with $a_{j}^{+}=(-1)^{j} a_{j}^{-}$for $j \in\{1, \ldots, m\}$.
Moreover, in this case
for all $j \in\{1, \ldots, m\}$.

Theorem: Let f be a computer function that is continuous at x_{0}. Then f is m times differentiable at x_{0} if and only if

$$
\bar{f}\left(x_{0}-d\right)={ }_{m} f\left(x_{0}\right)+\sum_{j=1}^{m} a_{j}^{-} d^{j}
$$

and

$$
\bar{f}\left(x_{0}+d\right)={ }_{m} f\left(x_{0}\right)+\sum_{j=1}^{m} a_{j}^{+} d^{j},
$$

with $a_{j}^{+}=(-1)^{j} a_{j}^{-}$for $j \in\{1, \ldots, m\}$.
Moreover, in this case

$$
f^{(j)}\left(x_{0}\right)=j!a_{j}^{+}=(-1)^{j} j!a_{j}^{-}
$$

for all $j \in\{1, \ldots, m\}$.

Example

$$
\begin{gathered}
g(x)= \\
\frac{\sin \left(x^{3}+2 x+1\right)+\frac{3+\cos (\sin (\ln |1+x|))}{\exp \left(\tanh \left(\sinh \left(\cosh \left(\frac{\sin (\cos (\tan (\exp (x))))}{\cos (\sin (\exp (\tan (x+2))))}\right)\right)\right)\right)}}{2+\sin \left(\sinh \left(\cos \left(\tan ^{-1}\left(\ln \left(\exp (x)+x^{2}+3\right)\right)\right)\right)\right.} .
\end{gathered}
$$

Table: $g^{(n)}(0), 0 \leq n \leq 10$, computed using \mathscr{R} calculus

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007115	1.820 msec
1	0.4601438089634254	2.070 msec
2	-5.266097568233224	3.180 msec
3	-52.82163351991485	4.830 msec
4	-108.4682847837855	7.700 msec
5	16451.44286410806	11.640 msec
6	541334.9970224757	18.050 msec
7	7948641.189364974	26.590 msec
8	-144969388.2104904	37.860 msec
9	-15395959663.01733	52.470 msec
10	-618406836695.3634	72.330 msec

Table: $g^{(n)}(0), 0 \leq n \leq 6$, computed using \mathscr{R} calculus

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007115	1.820 msec
1	0.4601438089634254	2.070 msec
2	-5.266097568233224	3.180 msec
3	-52.82163351991485	4.830 msec
4	-108.4682847837855	7.700 msec
5	16451.44286410806	11.640 msec

Table: $g^{(n)}(0), 0 \leq n \leq 6$, computed with Mathematica

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007116	110 msec
1	0.4601438089634254	170 msec
2	-5.266097568233221	470 msec
3	-52.82163351991483	$2,570 \mathrm{msec}$
4	-108.4682847837854	$14,740 \mathrm{msec}$
5	16451.44286410805	$77,500 \mathrm{msec}$

References

http://www2.physics.umanitoba.ca/u/khodr/\#Publications

References

http://www2.physics.umanitoba.ca/u/khodr/\#Publications

d^{-n} thanks

d^{-n} thanks

for some $n \in \mathbb{N}$!

