On non-Archimedean valued fields: a survey of algebraic, topological and metric structures, analysis and applications

Khodr Shamseddine

University of Manitoba

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 1/39

4 D b 4 B b 4 B b 4 B b

2 Ultrametric Spaces

Examples of Non-Archimedean Valued Fields

- The *p*-adic Fields
- Ordered Fields
- Hahn Fields
 - Levi-Civita Fields

Outline for Section 2

Non-Archimedean Valued Fields

2 Ultrametric Spaces

Examples of Non-Archimedean Valued Fields
 The *p*-adic Fields
 Ordered Fields

Hahn Fields
 Levi-Civita Field

4 The Levi-Civita Fields ${\mathscr R}$ and ${\mathscr C}$

- |a| = 0 if and only if a = 0;
- ③ $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

イロト イポト イヨト イヨト 三日

- |a| = 0 if and only if a = 0;
- ③ $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

- |a| = 0 if and only if a = 0;
- 3 $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

- |a| = 0 if and only if a = 0;
- **2** $|ab| = |a| |b| \text{ for all } a, b \in K;$
- $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

- |a| = 0 if and only if a = 0;
- **2** $|ab| = |a| |b| \text{ for all } a, b \in K;$
- $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

- |a| = 0 if and only if a = 0;
- **2** $|ab| = |a| |b| \text{ for all } a, b \in K;$
- $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○

• |a| = 0 if and only if a = 0;

2
$$|ab| = |a| |b|$$
 for all $a, b \in K$;

● $|a+b| \le |a|+|b|$ for all $a, b \in K$ (triangle inequality).

The pair $(K, |\cdot|)$ is called a valued field which, for simplicity, will be denoted by K.

The Value Group: The set $|K^*| = \{|a| : a \in K^*\}$, where $K^* = K \setminus \{0\}$, is a subgroup of the multiplicative group of positive real numbers; it is called the value group of K.

Let $K \equiv (K, |\cdot|)$ be a valued field.

Definition: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- 2 |a + b| ≤ max{|a|, |b|} for all a, b ∈ K (the strong triangle inequality);
- 3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

イロト 不得 トイヨト イヨト

Let $K \equiv (K, |\cdot|)$ be a valued field.

Definition: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- ② $|a+b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);
- 3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

$|n.1| \le 1 \text{ for all } n \in \mathbb{N}.$

イロト 不得 トイヨト イヨト

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- ② $|a+b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);
- 3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- K is non-Archimedean;
- |a + b| ≤ max{|a|, |b|} for all a, b ∈ K (the strong triangle inequality);
- 3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- 2 $|a+b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);

3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

④ $|n.1| \le 1$ for all $n \in \mathbb{N}$.

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- 2 $|a+b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);

3 $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- 2 $|a+b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);

③ $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

④ $|n.1| \le 1$ for all $n \in \mathbb{N}$.

Let $K \equiv (K, |\cdot|)$ be a valued field.

<u>Definition</u>: We say that *K* is non-Archimedean if the set $\{n.1 : n \in \mathbb{N}\} := \{1, 1+1, 1+1+1, \ldots\}$ is bounded in *K*, i.e.

 $\sup_{n\in\mathbb{N}}\{|n.1|:n\in\mathbb{N}\}<\infty.$

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

- \bigcirc K is non-Archimedean;
- ② $|a + b| \le \max\{|a|, |b|\}$ for all $a, b \in K$ (the strong triangle inequality);

③ $|a+b| = \max\{|a|, |b|\}$ for all $a, b \in K$ satisfying $|a| \neq |b|$;

 $|n.1| \le 1 \text{ for all } n \in \mathbb{N}.$

Outline for Section 3

Non-Archimedean Valued Fields

Ultrametric Spaces

Examples of Non-Archimedean Valued Fields
 The *p*-adic Fields
 Ordered Fields

Hahn Fields
 Levi-Civita Field

4 The Levi-Civita Fields ${\mathscr R}$ and ${\mathscr C}$

イロト イヨト イヨト イヨト

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

- (i) $\Delta(x, y) = 0$ if and only if x = y;
- (ii) $\Delta(x,y) = \Delta(y,x);$
- (iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).
- The pair $(X, \Delta) \equiv X$ is called a metric space.
- For $a \in X$, and r > 0 in \mathbb{R} we set

$$B(a,r) := \{x \in X : \Delta(x,a) \le r\}$$
 and
 $B(a,r^{-}) := \{x \in X : \Delta(x,a) < r\}.$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

(i) $\Delta(x, y) = 0$ if and only if x = y;

(ii) $\Delta(x,y) = \Delta(y,x);$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

 $B(a,r) := \{x \in X : \Delta(x,a) \le r\}$ and $B(a,r^{-}) := \{x \in X : \Delta(x,a) < r\}.$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

(i) $\Delta(x,y) = 0$ if and only if x = y;

(ii) $\Delta(x,y) = \Delta(y,x);$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

 $B(a,r) := \{x \in X : \Delta(x,a) \le r\}$ and $B(a,r^{-}) := \{x \in X : \Delta(x,a) < r\}.$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

- (i) $\Delta(x,y) = 0$ if and only if x = y;
- (ii) $\Delta(x,y) = \Delta(y,x);$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

 $\begin{array}{rcl} B(a,r) &:= & \{ x \in X : \Delta(x,a) \leq r \} \text{ and} \\ B(a,r^{-}) &:= & \{ x \in X : \Delta(x,a) < r \}. \end{array}$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

- (i) $\Delta(x,y) = 0$ if and only if x = y;
- (ii) $\Delta(x,y) = \Delta(y,x);$
- (iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).
- The pair $(X, \Delta) \equiv X$ is called a metric space.
- For $a \in X$, and r > 0 in \mathbb{R} we set

 $\begin{array}{rcl} B(a,r) &:= & \{ x \in X : \Delta(x,a) \leq r \} \text{ and} \\ B(a,r^{-}) &:= & \{ x \in X : \Delta(x,a) < r \}. \end{array}$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

- (i) $\Delta(x,y) = 0$ if and only if x = y;
- (ii) $\Delta(x,y) = \Delta(y,x);$
- (iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).
- The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

 $B(a,r) := \{x \in X : \Delta(x,a) \le r\}$ and $B(a,r^{-}) := \{x \in X : \Delta(x,a) < r\}.$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0 in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

(i)
$$\Delta(x,y) = 0$$
 if and only if $x = y$;

(ii)
$$\Delta(x,y) = \Delta(y,x);$$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

$$egin{array}{rl} B(a,r) &:= & \{x \in X : \Delta(x,a) \leq r\} ext{ and } \ B(a,r^-) &:= & \{x \in X : \Delta(x,a) < r\}. \end{array}$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

(i)
$$\Delta(x,y) = 0$$
 if and only if $x = y$;

(ii)
$$\Delta(x,y) = \Delta(y,x);$$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

$$egin{array}{rl} B(a,r) &:= & \{x \in X : \Delta(x,a) \leq r\} ext{ and } \ B(a,r^-) &:= & \{x \in X : \Delta(x,a) < r\}. \end{array}$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

A metric on a set X is a map $\Delta:X\times X\to [0,\infty)$ such that for all $x,y,z\in X$

(i)
$$\Delta(x,y) = 0$$
 if and only if $x = y$;

(ii)
$$\Delta(x,y) = \Delta(y,x);$$

(iii) $\Delta(x,z) \leq \Delta(x,y) + \Delta(y,z)$ (triangle inequality).

The pair $(X, \Delta) \equiv X$ is called a metric space.

For $a \in X$, and r > 0 in \mathbb{R} we set

$$egin{array}{rl} B(a,r) &:= & \{x \in X : \Delta(x,a) \leq r\} ext{ and } \ B(a,r^-) &:= & \{x \in X : \Delta(x,a) < r\}. \end{array}$$

A subset $U \subset X$ is called open if for each $a \in U$ there exists an r > 0in \mathbb{R} such that $B(a, r^{-}) \subset U$.

The collection of open sets forms a topology on X which is called the topology induced by Δ .

Definition: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

 $\Delta(x,z) \le \max \left\{ \Delta(x,y), \Delta(y,z) \right\} \ \forall x,y,z \in X.$

<u>Theorem</u>: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the **Isosceles Triangle Principle**:

For all $x, y, z \in X$

 $\Delta(x,y) \neq \Delta(y,z) \Rightarrow \Delta(x,z) = \max \left\{ \Delta(x,y), \Delta(y,z) \right\}.$

イロト イヨト イヨト

<u>Definition</u>: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$\Delta(x,z) \le \max \left\{ \Delta(x,y), \Delta(y,z) \right\} \ \forall x,y,z \in X.$$

<u>Theorem</u>: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the **Isosceles Triangle Principle**:

For all $x, y, z \in X$

 $\Delta(x,y) \neq \Delta(y,z) \Rightarrow \Delta(x,z) = \max \left\{ \Delta(x,y), \Delta(y,z) \right\}.$

<u>Definition</u>: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$\Delta(x,z) \le \max \left\{ \Delta(x,y), \Delta(y,z) \right\} \ \forall x,y,z \in X.$$

<u>Theorem</u>: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the **Isosceles Triangle Principle**:

For all $x, y, z \in X$

 $\Delta(x,y) \neq \Delta(y,z) \Rightarrow \Delta(x,z) = \max \left\{ \Delta(x,y), \Delta(y,z) \right\}.$

イロト 不得 トイヨト イヨト

<u>Definition</u>: The metric Δ is said to be an ultrametric [and (X, Δ) an ultrametric space] if it satisfies the strong triangle inequality

$$\Delta(x,z) \le \max \left\{ \Delta(x,y), \Delta(y,z) \right\} \ \forall x,y,z \in X.$$

<u>**Theorem**</u>: Let (X, Δ) be a metric space. Then Δ is an ultrametric if and only if it satisfies the **Isosceles Triangle Principle**:

For all $x, y, z \in X$

$$\Delta(x,y) \neq \Delta(y,z) \Rightarrow \Delta(x,z) = \max \left\{ \Delta(x,y), \Delta(y,z) \right\}.$$

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a,b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C} . Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a, b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to \mathbb{R} or \mathbb{C} . Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a, b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If *K* is Archimedean and complete then *K* is topologically isomorphic to ℝ or ℂ. Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a, b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If *K* is Archimedean and complete then *K* is topologically isomorphic to ℝ or ℂ. Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a, b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If *K* is Archimedean and complete then *K* is topologically isomorphic to ℝ or ℂ. Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 9/39

Non-Archimedean Valued Fields \leftrightarrow Ultrametric Spaces

Let $K \equiv (K, |\cdot|)$ be a valued field.

- The map Δ : K × K → [0,∞), (a, b) → |a − b|, is a metric on K that induces a topology on K and makes K a topological field. We say that (K, | · |) is complete if it is complete with respect to the metric Δ.
- If K is Archimedean and complete then K is topologically isomorphic to ℝ or C. Thus, <u>almost all</u> complete valued fields are non-Archimedean.
- Assume $(K, |\cdot|)$ is a non-Archimedean valued field. Then
 - $(K, |\cdot|)$ is an ultrametric space; i.e. the metric induced by $|\cdot|$ satisfies the strong triangle inequality.
 - We have this way all examples of ultrametric spaces since each ultrametric space can isometrically be embedded into a non-Archimedean valued field.

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
 - If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
 - If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

Some of the Unusual Properties of Ultrametric Spaces

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
 - If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

- Let (X, Δ) be an ultrametric space.
 - Each point of a ball is a center.
 - Each ball in X is both open and closed ('clopen') and has an empty boundary.
 - Two balls are either disjoint, or one is contained in the other.
 - If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

イロト 不得 トイヨト イヨト

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.

• If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

イロト 不得 とくほ とくほ とうほ

Let (X, Δ) be an ultrametric space.

- Each point of a ball is a center.
- Each ball in X is both open and closed ('clopen') and has an empty boundary.
- Two balls are either disjoint, or one is contained in the other.
 - If two balls B_1 and B_2 are disjoint, then

 $dist(B_1, B_2) = \Delta(x, y)$ for each $x \in B_1, y \in B_2$

(X, Δ) is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

• A student's dream come true:

Given a_1, a_2, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then

$$\sum_{n=1}^{\infty} a_n \text{ converges in } K \Longleftrightarrow \lim_{n \to \infty} a_n = 0.$$

∜

 $(\boldsymbol{X}, \boldsymbol{\Delta})$ is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

• A student's dream come true:

Given a_1, a_2, \ldots in a complete ultrametric space (non-Archimedean valued field) K, then

・ロト ・ 同ト ・ ヨト ・ ヨト

∜

 $(\boldsymbol{X},\boldsymbol{\Delta})$ is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

• A student's dream come true:

∜

 $(\boldsymbol{X}, \boldsymbol{\Delta})$ is totally disconnected.

- There are no new values of an ultrametric after completion.
- A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

• A student's dream come true:

∜

 $(\boldsymbol{X},\boldsymbol{\Delta})$ is totally disconnected.

• There are no new values of an ultrametric after completion.

1

• A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

• A student's dream come true:

$$\sum_{n=1}^{\infty} a_n \text{ converges in } K \iff \lim_{n \to \infty} a_n = 0.$$

∜

 $(\boldsymbol{X}, \boldsymbol{\Delta})$ is totally disconnected.

• There are no new values of an ultrametric after completion.

1

• A sequence $(x_n)_n$ in X is Cauchy if and only if $\lim_{n\to\infty} \Delta(x_n, x_{n+1}) = 0.$

A student's dream come true:

$$\sum_{n=1}^{\infty} a_n \text{ converges in } K \iff \lim_{n \to \infty} a_n = 0.$$

<u>Remark</u>: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

イロト 不得 とくほ とくほ とうほ

<u>Remark</u>: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

<ロト < 同ト < 回ト < 回ト = 三日

<u>Remark</u>: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

<ロト < 同ト < 回ト < 回ト = 三日

<u>Remark</u>: The concept of spherical completeness plays a key role as a necessary and sufficient condition for the validity of the Hahn-Banach theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the converse is not always true. Nevertheless, the following lemma is a partial converse.

Lemma: Suppose that (X, Δ) is a Cauchy complete ultrametric space. If 0 is the only accumulation point of the set $\Delta(X \times X)$ then (X, Δ) is spherically complete.

Two Important Attributes of Spherically Complete Ultrametric Spaces

- A stronger version of the fixed point theorem: every shrinking map of a spherically complete ultrametric space has a unique fixed point.
- 2 Existence of best approximations: Let Y ≠ Ø be a spherically complete ultrametric space embedded in an ultrametric space X. Then each x ∈ X has a best approximation in Y, i.e. min{Δ(y, x) : y ∈ Y} exists.

イロト 不得 トイヨト イヨト

Two Important Attributes of Spherically Complete Ultrametric Spaces

- A stronger version of the fixed point theorem: every shrinking map of a spherically complete ultrametric space has a unique fixed point.
- 2 Existence of best approximations: Let Y ≠ Ø be a spherically complete ultrametric space embedded in an ultrametric space X. Then each x ∈ X has a best approximation in Y, i.e. min{∆(y, x) : y ∈ Y} exists.

Outline for Section 4

Non-Archimedean Valued Fields

2 Ultrametric Spaces

Examples of Non-Archimedean Valued Fields

- The *p*-adic Fields
- Ordered Fields
- Hahn Fields

Levi-Civita Fields

• The p-adic valuation on \mathbb{Q} is determined by

$$|a|_p = p^{-r}$$
 if $a = \frac{m}{n}p^r$ and m, n not divisible by p .

- The completion of $(\mathbb{Q}, |\cdot|_p)$ is called $(\mathbb{Q}_p, |\cdot|_p)$, the field of the *p*-adic numbers. Its value group is $\{p^n : n \in \mathbb{Z}\}$.
- \mathbb{Q}_p is locally compact and hence spherically complete; also separable.

• The p-adic valuation on \mathbb{Q} is determined by

$$|a|_p = p^{-r}$$
 if $a = \frac{m}{n}p^r$ and m, n not divisible by p .

- The completion of $(\mathbb{Q}, |\cdot|_p)$ is called $(\mathbb{Q}_p, |\cdot|_p)$, the field of the *p*-adic numbers. Its value group is $\{p^n : n \in \mathbb{Z}\}$.
- \mathbb{Q}_p is locally compact and hence spherically complete; also separable.

• The p-adic valuation on \mathbb{Q} is determined by

$$|a|_p = p^{-r}$$
 if $a = \frac{m}{n}p^r$ and m, n not divisible by p .

- The completion of $(\mathbb{Q}, |\cdot|_p)$ is called $(\mathbb{Q}_p, |\cdot|_p)$, the field of the *p*-adic numbers. Its value group is $\{p^n : n \in \mathbb{Z}\}$.
- \mathbb{Q}_p is locally compact and hence spherically complete; also separable.

• The p-adic valuation on \mathbb{Q} is determined by

$$|a|_p = p^{-r}$$
 if $a = \frac{m}{n}p^r$ and m, n not divisible by p .

- The completion of $(\mathbb{Q}, |\cdot|_p)$ is called $(\mathbb{Q}_p, |\cdot|_p)$, the field of the *p*-adic numbers. Its value group is $\{p^n : n \in \mathbb{Z}\}$.
- \mathbb{Q}_p is locally compact and hence spherically complete; also separable.

• The p-adic valuation on \mathbb{Q} is determined by

$$|a|_p = p^{-r}$$
 if $a = \frac{m}{n}p^r$ and m, n not divisible by p .

- The completion of $(\mathbb{Q}, |\cdot|_p)$ is called $(\mathbb{Q}_p, |\cdot|_p)$, the field of the *p*-adic numbers. Its value group is $\{p^n : n \in \mathbb{Z}\}$.
- \mathbb{Q}_p is locally compact and hence spherically complete; also separable.

- \mathbb{Q}_p is not algebraically closed. $|\cdot|_p$ can be extended uniquely to the algebraic closure \mathbb{Q}_p^a ; and the completion of $(\mathbb{Q}_p^a, |\cdot|_p)$ is called \mathbb{C}_p , the field of the *p*-adic complex numbers.
- \mathbb{C}_p is no longer locally compact, but separable and algebraically closed. Its value group is

$$\{p^r: r \in \mathbb{Q}\}\,,\,$$

so the valuation is dense.

• \mathbb{C}_p is not spherically complete!

- \mathbb{Q}_p is not algebraically closed. $|\cdot|_p$ can be extended uniquely to the algebraic closure \mathbb{Q}_p^a ; and the completion of $(\mathbb{Q}_p^a, |\cdot|_p)$ is called \mathbb{C}_p , the field of the *p*-adic complex numbers.
- \mathbb{C}_p is no longer locally compact, but separable and algebraically closed. Its value group is

$$\left\{ p^{r}:r\in\mathbb{Q}\right\} ,$$

so the valuation is dense.

• \mathbb{C}_p is not spherically complete!

- \mathbb{Q}_p is not algebraically closed. $|\cdot|_p$ can be extended uniquely to the algebraic closure \mathbb{Q}_p^a ; and the completion of $(\mathbb{Q}_p^a, |\cdot|_p)$ is called \mathbb{C}_p , the field of the *p*-adic complex numbers.
- \mathbb{C}_p is no longer locally compact, but separable and algebraically closed. Its value group is

$$\{p^r: r \in \mathbb{Q}\}\,,\,$$

so the valuation is dense.

• C_p is not spherically complete!

Let K be an ordered field.

$$|a|_0 := \max\{a, -a\} = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}.$$

- \sim is an equivalence relation on K^* . The equivalence class of $x \in K^*$ is denoted by [x]; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_K .
- G_K is an ordered abelian group under the order ≺ and addition + defined as follows: for every x, y ∈ K*,
 [x] ≺ [y] ⇔ ∀n ∈ N, n|y|₀ < |x|₀; and
 [x] + [y] := [xy].
 The neutral element is [1_K], and -[x] = [x⁻¹] for x ∈ K*.

Let K be an ordered field.

$$|a|_0 := \max\{a, -a\} = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}.$$

- \sim is an equivalence relation on K^* . The equivalence class of $x \in K^*$ is denoted by [x]; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_K .
- G_K is an ordered abelian group under the order ≺ and addition + defined as follows: for every x, y ∈ K*,
 [x] ≺ [y] ⇔ ∀n ∈ N, n|y|₀ < |x|₀; and
 [x] + [y] := [xy].

Let K be an ordered field.

$$|a|_0 := \max\{a, -a\} = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}.$$

- \sim is an equivalence relation on K^* . The equivalence class of $x \in K^*$ is denoted by [x]; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_K .
- G_K is an ordered abelian group under the order ≺ and addition + defined as follows: for every x, y ∈ K*,
 [x] ≺ [y] ⇔ ∀n ∈ N, n|y|₀ < |x|₀; and
 [x] + [y] := [xy].
 The neutral element is [1_K], and -[x] = [x⁻¹] for x ∈ K*.

Let K be an ordered field.

$$|a|_0 := \max\{a, -a\} = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}.$$

- \sim is an equivalence relation on K^* . The equivalence class of $x \in K^*$ is denoted by [x]; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_K .
- G_K is an ordered abelian group under the order ≺ and addition + defined as follows: for every x, y ∈ K*,
 [x] ≺ [y] ⇔ ∀n ∈ N, n|y|₀ < |x|₀; and
 [x] + [y] := [xy].
 The neutral element is [1_K], and -[x] = [x⁻¹] for x ∈ K*.

Let K be an ordered field.

$$|a|_0 := \max\{a, -a\} = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}.$$

- \sim is an equivalence relation on K^* . The equivalence class of $x \in K^*$ is denoted by [x]; and the set of all the equivalence classes (aka Archimedean classes) is denoted by G_K .
- G_K is an ordered abelian group under the order ≺ and addition + defined as follows: for every x, y ∈ K*,
 [x] ≺ [y] ⇔ ∀n ∈ N, n|y|₀ < |x|₀; and
 [x] + [y] := [xy].
 The neutral element is [1_K], and -[x] = [x⁻¹] for x ∈ K*.

- **Definition**: An ordered field *K* is *Archimedean* if $G_K = \{[1_K]\}$, that is when any two elements in K^* are comparable.
- Each Archimedean ordered field can be embedded in ℝ.
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".

イロト 不得 トイヨト イヨト

- **Definition**: An ordered field *K* is *Archimedean* if $G_K = \{[1_K]\}$, that is when any two elements in K^* are comparable.
- Each Archimedean ordered field can be embedded in ℝ.
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".

イロト 不得 とくほ とくほ とうほ

- **Definition**: An ordered field *K* is *Archimedean* if $G_K = \{[1_K]\}$, that is when any two elements in K^* are comparable.
- Each Archimedean ordered field can be embedded in \mathbb{R} .
- Hans Hahn (1907) generalized this property and he ended up with ordered fields that extend all the ordered fields with a given "level of non-Archimedicity".

- **Definition**: Let E/K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_E and G_K are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- **Definition**: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_K , then we say that K is of type G and G is called an *Archimedean group of* K.
- The simplest Archimedean complete field is R, since it is (up to isomorphism) the only Archimedean complete, ordered field of type {0}. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.

イロト 不得 トイヨト イヨト

- **Definition**: Let E/K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_E and G_K are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- **Definition**: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_K , then we say that K is of type G and G is called an *Archimedean group of* K.
- The simplest Archimedean complete field is R, since it is (up to isomorphism) the only Archimedean complete, ordered field of type {0}. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- **Definition**: Let E/K be an extension of ordered fields. The field E is an Archimedean extension of K if every $x \in E$ is comparable to some $y \in K$. In that case, G_E and G_K are isomorphic ordered groups. An ordered field K is called Archimedean complete if it has no proper Archimedean extension fields.
- **Definition**: Let K be an ordered field. If G is an ordered abelian group isomorphic to G_K , then we say that K is of type G and G is called an *Archimedean group of* K.
- The simplest Archimedean complete field is R, since it is (up to isomorphism) the only Archimedean complete, ordered field of type {0}. Archimedean complete fields of other types are given by the general Hahn fields defined in the next result.

・ ロ ト ・ 雪 ト ・ 国 ト ・ 国 ト

• **<u>Theorem</u>**: Let *K* be a field (not necessarily ordered) and *G* an ordered abelian group. The set

 $K((G)) := \{ f : G \to K : supp(f) \text{ is well-ordered} \},\$

where $supp(f) := \{x \in G : f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

$$(f+g)(x) := f(x) + g(x),$$

$$f_a(x) := \sum_{i=1}^{n} f(a)g(b)$$

Fields of the form K((G)) are called general Hahn fields.

 When K is an ordered field we can define an order on K((G)).
 Definition: Let K be an ordered field and consider
 λ : K((G))* → G, λ(f) = min{supp(f)}. For f, g ∈ K((G)) we
 define:

$f < g \Leftrightarrow f \neq g \text{ and } (f - g)(\lambda(f - g)) < 0.$

Then $(K((G)), \leq)$ is an ordered field.

Khodr Shamseddine (U of M)

• <u>Theorem</u>: Let *K* be a field (not necessarily ordered) and *G* an ordered abelian group. The set

 $K((G)) := \{ f : G \to K : supp(f) \text{ is well-ordered} \},\$

where $supp(f) := \{x \in G : f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

(f + g)(x) :=
$$f(x) + g(x)$$
,
fg(x) := $\sum_{a+b=x} f(a)g(b)$.

Fields of the form K((G)) are called general Hahn fields.

 When K is an ordered field we can define an order on K((G)).
 Definition: Let K be an ordered field and consider
 λ : K((G))* → G, λ(f) = min{supp(f)}. For f, g ∈ K((G)) we
 define:

 $f < g \Leftrightarrow f \neq g \text{ and } (f-g)(\lambda(f-g)) < 0.$

Then $(K((G)), \leq)$ is an ordered field.

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 20/39

• <u>Theorem</u>: Let *K* be a field (not necessarily ordered) and *G* an ordered abelian group. The set

 $K((G)) := \{ f : G \to K : supp(f) \text{ is well-ordered} \},\$

where $supp(f) := \{x \in G : f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

•
$$(f+g)(x) := f(x) + g(x),$$

• $fg(x) := \sum_{a+b=x} f(a)g(b).$

- Fields of the form K((G)) are called *general Hahn fields*.
- When K is an ordered field we can define an order on K((G)).
 <u>Definition</u>: Let K be an ordered field and consider
 λ : K((G))* → G, λ(f) = min{supp(f)}. For f, g ∈ K((G)) we
 define:

$f < g \Leftrightarrow f \neq g \text{ and } (f - g)(\lambda(f - g)) < 0.$

Then $(K((G)), \leq)$ is an ordered field.

Khodr Shamseddine (U of M)

• <u>Theorem</u>: Let *K* be a field (not necessarily ordered) and *G* an ordered abelian group. The set

 $K((G)) := \{ f : G \to K : supp(f) \text{ is well-ordered} \},\$

where $supp(f) := \{x \in G : f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

(f + g)(x) :=
$$f(x) + g(x)$$
,
fg(x) := $\sum_{a+b=x} f(a)g(b)$.

- Fields of the form *K*((*G*)) are called *general Hahn fields*.
- When K is an ordered field we can define an order on K((G)).

Definition: Let *K* be an ordered field and consider $\lambda : K((G))^* \to G, \lambda(f) = \min\{supp(f)\}$. For $f, g \in K((G))$ we define:

$f < g \Leftrightarrow f \neq g \text{ and } (f - g)(\lambda(f - g)) < 0.$

Then $(K((G)), \leq)$ is an ordered field.

Khodr Shamseddine (U of M)

• <u>Theorem</u>: Let *K* be a field (not necessarily ordered) and *G* an ordered abelian group. The set

 $K((G)) := \{f : G \to K : supp(f) \text{ is well-ordered}\},\$

where $supp(f) := \{x \in G : f(x) \neq 0\}$, is a field under the addition and multiplication defined as follows:

(f + g)(x) :=
$$f(x) + g(x)$$
,
fg(x) := $\sum_{a+b=x} f(a)g(b)$.

- Fields of the form *K*((*G*)) are called *general Hahn fields*.
- When K is an ordered field we can define an order on K((G)).

<u>Definition</u>: Let *K* be an ordered field and consider $\lambda : K((G))^* \to G$, $\lambda(f) = \min\{supp(f)\}$. For $f, g \in K((G))$ we define:

$$f < g \Leftrightarrow f \neq g \text{ and } (f - g)(\lambda(f - g)) < 0.$$

Then $(K((G)), \leq)$ is an ordered field.

Khodr Shamseddine (U of M)

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.

- Hahn's Embedding Theorem: If *K* is an ordered field, then for every Archimedean group *G* of *K*, there exists an order-preserving field monomorphism σ from *K* into $\mathbb{R}((G))$ such that $\mathbb{R}((G))$ is an Archimedean extension of $\sigma(K)$.
- **Hahn's Completeness Theorem**: If *G* is an ordered abelian group then the field $\mathbb{R}((G))$ is (up to isomorphism) the only Archimedean complete, ordered field of type *G*.

Khodr Shamseddine (U of M)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.

- Hahn's Embedding Theorem: If *K* is an ordered field, then for every Archimedean group *G* of *K*, there exists an order-preserving field monomorphism σ from *K* into $\mathbb{R}((G))$ such that $\mathbb{R}((G))$ is an Archimedean extension of $\sigma(K)$.
- **Hahn's Completeness Theorem**: If *G* is an ordered abelian group then the field $\mathbb{R}((G))$ is (up to isomorphism) the only Archimedean complete, ordered field of type *G*.

イロト 不得 とくほ とくほ とうほ

The next two results are the main features of the general Hahn fields as ordered fields and mimic the relation between \mathbb{R} and other ordered Archimedean fields.

- Hahn's Embedding Theorem: If *K* is an ordered field, then for every Archimedean group *G* of *K*, there exists an order-preserving field monomorphism σ from *K* into $\mathbb{R}((G))$ such that $\mathbb{R}((G))$ is an Archimedean extension of $\sigma(K)$.
- **Bahn's Completeness Theorem:** If *G* is an ordered abelian group then the field $\mathbb{R}((G))$ is (up to isomorphism) the only Archimedean complete, ordered field of type *G*.

<u>Definition</u>: A *Hahn field* is a general Hahn field K((G)) for which G is a subgroup of $(\mathbb{R}, +)$ and K is any field.

<u>Theorem</u>: Let *G* be a subgroup of $(\mathbb{R}, +)$ and *K* any field. If the map $| : K((G)) \to \mathbb{R}$ is defined by

$$|f| := \begin{cases} e^{-\lambda(f)} & \text{if } f \neq 0\\ 0 & \text{if } f = 0, \end{cases}$$

then (K((G)), | |) is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group $|K((G))^*| = \{e^g \in \mathbb{R} : g \in G\}.$

<u>Definition</u>: A Hahn field is a general Hahn field K((G)) for which G is a subgroup of $(\mathbb{R}, +)$ and K is any field.

<u>Theorem</u>: Let *G* be a subgroup of $(\mathbb{R}, +)$ and *K* any field. If the map $| : K((G)) \to \mathbb{R}$ is defined by

$$|f| := \begin{cases} e^{-\lambda(f)} & \text{if } f \neq 0\\ 0 & \text{if } f = 0, \end{cases}$$

then (K((G)), | |) is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group $|K((G))^*| = \{e^g \in \mathbb{R} : g \in G\}.$

イロト 不得 トイヨト イヨト

<u>Definition</u>: A Hahn field is a general Hahn field K((G)) for which G is a subgroup of $(\mathbb{R}, +)$ and K is any field.

<u>Theorem</u>: Let *G* be a subgroup of $(\mathbb{R}, +)$ and *K* any field. If the map $| : K((G)) \to \mathbb{R}$ is defined by

$$f| := \begin{cases} e^{-\lambda(f)} & \text{if } f \neq 0\\ 0 & \text{if } f = 0, \end{cases}$$

then $(K((G)), | \ |)$ is a spherically complete non-Archimedean valued field with residue class field isomorphic to K and value group $|K((G))^*| = \{e^g \in \mathbb{R} : g \in G\}.$

- $L[G,K] := \{f: G \to K | supp(f) \cap (-\infty, n] \text{ is finite for every } n \in \mathbb{Z}\}$ is a subfield of K((G)).
- When we restrict the valuation of K((G)) to L[G, K], the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group |L[G, K]*| = {e^g : g ∈ G}.
- Fields of the form L[G, K] are called *Levi-Civita fields*.

イロト 不得 とくほ とくほ とうほ

- $L[G,K] := \{f : G \to K | supp(f) \cap (-\infty, n] \text{ is finite for every } n \in \mathbb{Z} \}$ is a subfield of K((G)).
- When we restrict the valuation of K((G)) to L[G, K], the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group |L[G, K]*| = {e^g : g ∈ G}.
- Fields of the form L[G, K] are called *Levi-Civita fields*.

イロト 不得 とくほ とくほ とうほ

٥

 $L[G,K] := \{f: G \to K | supp(f) \cap (-\infty, n] \text{ is finite for every } n \in \mathbb{Z} \}$ is a subfield of K((G)).

When we restrict the valuation of K((G)) to L[G, K], the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group |L[G, K]*| = {e^g : g ∈ G}.

• Fields of the form L[G, K] are called *Levi-Civita fields*.

<ロト < 同ト < 回ト < 回ト = 三日

٥

 $L[G,K] := \{f: G \to K | supp(f) \cap (-\infty,n] \text{ is finite for every } n \in \mathbb{Z} \}$

is a subfield of K((G)).

When we restrict the valuation of K((G)) to L[G, K], the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group |L[G, K]*| = {e^g : g ∈ G}.

• Fields of the form L[G, K] are called *Levi-Civita fields*.

<ロト < 同ト < 回ト < 回ト = 三日

٥

 $L[G,K] := \{ f: G \to K | supp(f) \cap (-\infty, n] \text{ is finite for every } n \in \mathbb{Z} \}$

is a subfield of K((G)).

- When we restrict the valuation of K((G)) to L[G, K], the latter becomes a Cauchy complete, non-Archimedean valued field with residue class field isomorphic to K and value group |L[G, K]*| = {e^g : g ∈ G}.
- Fields of the form L[G, K] are called *Levi-Civita fields*.

<ロト < 同ト < 回ト < 回ト = 三日

Lemma: Let *K* be a field and let $d : \mathbb{Q} \to K$ be the function defined by

$$d(x) := \begin{cases} 1 & \text{if } x = 1\\ 0 & \text{if } x \neq 1. \end{cases}$$

Then *d* is an element of the field $L[\mathbb{Q}, K]$; and for any $r \in \mathbb{Q}$, we have that

$$d^{r}(x) = \begin{cases} 1 & \text{if } x = r \\ 0 & \text{if } x \neq r. \end{cases}$$

Every nonzero element $f \in L[\mathbb{Q}, K]$ is the sum of a convergent generalized power series with respect to the valuation on $L[\mathbb{Q}, K]$, specifically:

$$f = \sum_{r \in \mathbb{Q}} f(r)d^r = \sum_{r \in supp(f)} f(r)d^r.$$

Lemma: Let *K* be a field and let $d : \mathbb{Q} \to K$ be the function defined by

$$d(x) := \begin{cases} 1 & \text{if } x = 1 \\ 0 & \text{if } x \neq 1. \end{cases}$$

Then d is an element of the field $L[\mathbb{Q}, K]$; and for any $r \in \mathbb{Q}$, we have that

$$d^{r}(x) = \begin{cases} 1 & \text{if } x = r \\ 0 & \text{if } x \neq r. \end{cases}$$

Every nonzero element $f \in L[\mathbb{Q}, K]$ is the sum of a convergent generalized power series with respect to the valuation on $L[\mathbb{Q}, K]$, specifically:

$$f = \sum_{r \in \mathbb{Q}} f(r)d^r = \sum_{r \in supp(f)} f(r)d^r.$$

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.
- If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.
- If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.

If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.

If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.

If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- The following are equivalent:
 - K((G)) and L[G, K] coincide.
 - G is discrete.
 - L[G, K] is spherically complete.
- If K is an ordered field, then K((G)) is an Archimedean extension of L[G, K] with respect to the order. If, in addition, K is Archimedean then both K((G)) and L[G, K] are of type G.

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i) = \mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}](i) = L[\mathbb{Q},\mathbb{C}]$ are algebraically closed.

・ロット (同) ・ (回) ・ (回)

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))(i) = \mathbb{C}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}](i) = L[\mathbb{Q},\mathbb{C}]$ are algebraically closed.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

1

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

∜

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

∜

∜

- If *K* is a field and *G* an ordered abelian group, then *K*((*G*)) is real closed if and only if *K* is real closed and *G* is divisible.
- $L[\mathbb{Q}, K]$ is real closed if and only if K is real closed.

The Hahn field $\mathbb{R}((\mathbb{Q}))$ and the Levi-Civita field $L[\mathbb{Q},\mathbb{R}]$ are real closed.

∜

1

Outline for Section 5

Non-Archimedean Valued Fields

2 Ultrametric Spaces

Examples of Non-Archimedean Valued Fields
 The *p*-adic Fields
 Ordered Fields

- - Levi-Civita Fields

4 The Levi-Civita Fields ${\mathscr R}$ and ${\mathscr C}$

Let $\mathscr{R} := L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C} := L[\mathbb{Q}, \mathbb{C}]$.

- *ℛ* is the smallest Cauchy complete and real closed non-Archimedean field extension of ℝ.
 - It is small enough so that the *R*-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C} .

Let $\mathscr{R} := L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C} := L[\mathbb{Q}, \mathbb{C}]$.

- \mathscr{R} is the smallest Cauchy complete and real closed non-Archimedean field extension of \mathbb{R} .
 - It is small enough so that the *R*-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C} .

Let $\mathscr{R} := L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C} := L[\mathbb{Q}, \mathbb{C}]$.

- ℛ is the smallest Cauchy complete and real closed non-Archimedean field extension of ℝ.
 - It is small enough so that the *R*-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C} .

- Let $\mathscr{R} := L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C} := L[\mathbb{Q}, \mathbb{C}]$.
 - ℛ is the smallest Cauchy complete and real closed non-Archimedean field extension of ℝ.
 - It is small enough so that the *R*-numbers can be implemented on a computer, thus allowing for computational applications.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $\mathscr{R} := L[\mathbb{Q}, \mathbb{R}]$ and $\mathscr{C} := L[\mathbb{Q}, \mathbb{C}]$.
 - ℛ is the smallest Cauchy complete and real closed non-Archimedean field extension of ℝ.
 - It is small enough so that the *R*-numbers can be implemented on a computer, thus allowing for computational applications.
 - \mathscr{C} is the smallest Cauchy complete and algebraically closed non-Archimedean field extension of \mathbb{C} .

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on \mathcal{R}
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

• Topological Structure (Valuation topology and a weaker topology)

- Power Series and Analytic Functions
- Calculus on \mathcal{R}
- Measure Theory and Integration on $\mathscr{R}, \mathscr{R}^2$ and \mathscr{R}^3
- Optimization
- Operator Theory
- Computational Applications

イロト 不得 トイヨト イヨト

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on ${\mathscr R}$
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on *R*
- Measure Theory and Integration on $\mathscr{R},\,\mathscr{R}^2$ and \mathscr{R}^3
- Optimization
- Operator Theory
- Computational Applications

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on *R*
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on *R*
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on *R*
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

- Topological Structure (Valuation topology and a weaker topology)
- Power Series and Analytic Functions
- Calculus on *R*
- Measure Theory and Integration on $\mathscr{R}, \, \mathscr{R}^2$ and $\, \mathscr{R}^3$
- Optimization
- Operator Theory
- Computational Applications

<u>Problem</u>: The need for differentiation tools arises in many fields of science. Usually, formula manipulators like Mathematica do not work everywhere. For example,

$$f(x) = x^2 \sqrt{|x|} + \exp(x)$$

is differentiable at 0; but the attempt to compute its derivative using formula manipulators may fail.

<u>Problem</u>: The need for differentiation tools arises in many fields of science. Usually, formula manipulators like Mathematica do not work everywhere. For example,

$$f(x) = x^2 \sqrt{|x|} + \exp(x)$$

is differentiable at 0; but the attempt to compute its derivative using formula manipulators may fail.

(日)

Solution: Using the calculus on \mathscr{R} , we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.

Definition (Computer Functions): A function $f : \mathbb{R} \to \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let f be a computer function, let $x_0 \in \mathbb{R}$ be in the domain of f, and let $s \in \mathscr{R}$. Then f is extendable to $x_0 + s$ means $x_0 + s$ belongs to the domain of \overline{f} , the continuation of f to \mathscr{R}

Solution: Using the calculus on \mathscr{R} , we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.

Definition (Computer Functions): A function $f : \mathbb{R} \to \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let *f* be a computer function, let $x_0 \in \mathbb{R}$ be in the domain of *f*, and let $s \in \mathscr{R}$. Then *f* is extendable to $x_0 + s$ means $x_0 + s$ belongs to the domain of \overline{f} , the continuation of *f* to \mathscr{R}

<ロト < 同ト < 回ト < 回ト = 三日

Solution: Using the calculus on \mathscr{R} , we formulate a necessary and sufficient condition for the derivatives of functions representable on a computer to exist, and show how to find these derivatives whenever they exist.

Definition (Computer Functions): A function $f : \mathbb{R} \to \mathbb{R}$ is called a computer function if it can be obtained from intrinsic functions and the Heaviside function through a finite number of arithmetic operations and compositions.

Definition: Let f be a computer function, let $x_0 \in \mathbb{R}$ be in the domain of f, and let $s \in \mathscr{R}$. Then f is extendable to $x_0 + s$ means $x_0 + s$ belongs to the domain of \overline{f} , the continuation of f to \mathscr{R}

Theorem (Standard Form of Computer Functions): Let *f* be a real computer function with domain of definition *D*, and let $x_0 \in D$ be such that *f* is extendable to $x_0 \pm d$. Then there exists a real number $\sigma > 0$ such that, for $0 < x < \sigma$,

$$f(x_0 \pm x) = A_0^{\pm}(x) + \sum_{i=1}^{i^{\pm}} x^{q_i^{\pm}} A_i^{\pm}(x),$$

where $A_i^{\pm}(x)$ is a power series with a radius of convergence no smaller than σ , $A_i^{\pm}(0) \neq 0$, and $q_i^{\pm} \in \mathbb{Q} \setminus (\mathbb{N} \cup \{0\})$, for $i = 1, \ldots, i^{\pm}$.

Lemma: Let *f* be a computer function that is defined at the real point x_0 . Then *f* is <u>extendable</u> to $x_0 \pm d$ if and only if $\overline{f}(x_0 \pm d)$ can be evaluated on a computer.

<u>Theorem</u>: Let *f* be a computer function, and let x_0 be such that $\overline{f}(x_0 - d)$, $f(x_0)$, and $\overline{f}(x_0 + d)$ are all defined. Then *f* is <u>continuous</u> at x_0 if and only if

$$\bar{f}(x_0 - d) =_0 f(x_0) =_0 \bar{f}(x_0 + d).$$

イロト 不得 トイヨト イヨト

Lemma: Let *f* be a computer function that is defined at the real point x_0 . Then *f* is <u>extendable</u> to $x_0 \pm d$ if and only if $\overline{f}(x_0 \pm d)$ can be evaluated on a computer.

<u>Theorem</u>: Let *f* be a computer function, and let x_0 be such that $\overline{f}(x_0 - d)$, $f(x_0)$, and $\overline{f}(x_0 + d)$ are all defined. Then *f* is <u>continuous</u> at x_0 if and only if

$$\bar{f}(x_0 - d) =_0 f(x_0) =_0 \bar{f}(x_0 + d).$$

イロト イポト イヨト イヨト 三日

Lemma: Let *f* be a computer function that is defined at the real point x_0 . Then *f* is <u>extendable</u> to $x_0 \pm d$ if and only if $\overline{f}(x_0 \pm d)$ can be evaluated on a computer.

<u>Theorem</u>: Let *f* be a computer function, and let x_0 be such that $\overline{f}(x_0 - d)$, $f(x_0)$, and $\overline{f}(x_0 + d)$ are all defined. Then *f* is <u>continuous</u> at x_0 if and only if

$$\bar{f}(x_0 - d) =_0 f(x_0) =_0 \bar{f}(x_0 + d).$$

Lemma: Let *f* be a computer function that is defined at the real point x_0 . Then *f* is <u>extendable</u> to $x_0 \pm d$ if and only if $\overline{f}(x_0 \pm d)$ can be evaluated on a computer.

<u>**Theorem**</u>: Let *f* be a computer function, and let x_0 be such that $\overline{f}(x_0 - d)$, $f(x_0)$, and $\overline{f}(x_0 + d)$ are all defined. Then *f* is <u>continuous</u> at x_0 if and only if

$$\bar{f}(x_0 - d) =_0 f(x_0) =_0 \bar{f}(x_0 + d).$$

<u>Theorem</u>: Let *f* be a computer function that is continuous at x_0 . Then *f* is *m* times differentiable at x_0 if and only if

$$\bar{f}(x_0 - d) =_m f(x_0) + \sum_{j=1}^m a_j^- d^j$$

and

$$\bar{f}(x_0+d) =_m f(x_0) + \sum_{j=1}^m a_j^+ d^j,$$

with
$$a_j^+ = (-1)^j a_j^-$$
 for $j \in \{1, \dots, m\}$.

Moreover, in this case

$$f^{(j)}(x_0) = j!a_j^+ = (-1)^j j!a_j^-.$$

for all $j \in \{1, ..., m\}$.

Khodr Shamseddine (U of M)

<u>Theorem</u>: Let *f* be a computer function that is continuous at x_0 . Then *f* is *m* times differentiable at x_0 if and only if

$$\bar{f}(x_0 - d) =_m f(x_0) + \sum_{j=1}^m a_j^- d^j$$

and

$$\bar{f}(x_0+d) =_m f(x_0) + \sum_{j=1}^m a_j^+ d^j,$$

with
$$a_j^+ = (-1)^j a_j^-$$
 for $j \in \{1, \dots, m\}$.

Moreover, in this case

$$f^{(j)}(x_0) = j!a_j^+ = (-1)^j j!a_j^-.$$

for all $j \in \{1, ..., m\}$.

$$g(x) =$$

$$\frac{\sin\left(x^3 + 2x + 1\right) + \frac{3 + \cos(\sin(\ln|1+x|))}{\exp\left(\tanh\left(\sinh\left(\cosh\left(\frac{\sin(\cos(\tan(\exp(x))))}{\cos(\sin(\exp(\tan(x+2))))}\right)\right)\right)\right)}}{2 + \sin\left(\sinh\left(\cos\left(\tan^{-1}\left(\ln\left(\exp(x) + x^2 + 3\right)\right)\right)\right)}$$

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 35/39

◆□→ ◆□→ ◆三→ ◆三→ 三三

Table: $g^{(n)}(0), 0 \le n \le 10$, computed using \mathscr{R} calculus

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007115	1.820 msec
1	0.4601438089634254	2.070 msec
2	-5.266097568233224	3.180 msec
3	-52.82163351991485	4.830 msec
4	-108.4682847837855	7.700 msec
5	16451.44286410806	11.640 msec
6	541334.9970224757	18.050 msec
7	7948641.189364974	26.590 msec
8	-144969388.2104904	37.860 msec
9	-15395959663.01733	52.470 msec
10	-618406836695.3634	72.330 msec

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table: $g^{(n)}(0), 0 \le n \le 6$, computed using \mathscr{R} calculus

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007115	1.820 msec
1	0.4601438089634254	2.070 msec
2	-5.266097568233224	3.180 msec
3	-52.82163351991485	4.830 msec
4	-108.4682847837855	7.700 msec
5	16451.44286410806	11.640 msec

Table: $g^{(n)}(0), 0 \le n \le 6$, computed with Mathematica

Order n	$g^{(n)}(0)$	CPU Time
0	1.004845319007116	110 msec
1	0.4601438089634254	170 msec
2	-5.266097568233221	470 msec
3	-52.82163351991483	2,570 msec
4	-108.4682847837854	14,740 msec
5	16451.44286410805	77,500 msec

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

http://www2.physics.umanitoba.ca/u/khodr/#Publications

http://www2.physics.umanitoba.ca/u/khodr/#Publications

Khodr Shamseddine (U of M)

d^{-n} thanks

for some $n \in \mathbb{N}!$

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 39/39

d^{-n} thanks

for some $n \in \mathbb{N}!$

Khodr Shamseddine (U of M)

Non-Archimedean Fields and Applications

March 9, 2021 39/39