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Valued Fields

Valuation: Let K be a field. A valuation on K is a map
| · | : K → [0,∞) that satisfies the following properties

1 |a| = 0 if and only if a = 0;

2 |ab| = |a| |b| for all a, b ∈ K;

3 |a+ b| ≤ |a|+ |b| for all a, b ∈ K (triangle inequality).

The pair (K, | · |) is called a valued field which, for simplicity, will be
denoted by K.

The Value Group: The set |K∗| = {|a| : a ∈ K∗}, where K∗ = K \ {0},
is a subgroup of the multiplicative group of positive real numbers; it is
called the value group of K.
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Non-Archimedean Valued Fields

Let K ≡ (K, | · |) be a valued field.

Definition: We say that K is non-Archimedean if the set
{n.1 : n ∈ N} := {1, 1 + 1, 1 + 1 + 1, . . .} is bounded in K, i.e.

sup
n∈N
{|n.1| : n ∈ N} <∞.

Otherwise, we say that K is Archimedean.

Theorem: The following are equivalent

1 K is non-Archimedean;

2 |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K (the strong triangle
inequality);

3 |a+ b| = max{|a|, |b|} for all a, b ∈ K satisfying |a| 6= |b|;

4 |n.1| ≤ 1 for all n ∈ N.
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Metric Spaces

A metric on a set X is a map ∆ : X ×X → [0,∞) such that for all
x, y, z ∈ X

(i) ∆(x, y) = 0 if and only if x = y;

(ii) ∆(x, y) = ∆(y, x);

(iii) ∆(x, z) ≤ ∆(x, y) + ∆(y, z) (triangle inequality).

The pair (X,∆) ≡ X is called a metric space.

For a ∈ X, and r > 0 in R we set

B(a, r) := {x ∈ X : ∆(x, a) ≤ r} and
B(a, r−) := {x ∈ X : ∆(x, a) < r}.

A subset U ⊂ X is called open if for each a ∈ U there exists an r > 0
in R such that B(a, r−) ⊂ U .

The collection of open sets forms a topology on X which is called the
topology induced by ∆.
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Ultrametric Spaces

Definition: The metric ∆ is said to be an ultrametric [and (X,∆) an
ultrametric space] if it satisfies the strong triangle inequality

∆(x, z) ≤ max {∆(x, y),∆(y, z)} ∀x, y, z ∈ X.

Theorem: Let (X,∆) be a metric space. Then ∆ is an ultrametric if
and only if it satisfies the Isosceles Triangle Principle:

For all x, y, z ∈ X

∆(x, y) 6= ∆(y, z)⇒ ∆(x, z) = max {∆(x, y),∆(y, z)} .
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Non-Archimedean Valued Fields↔ Ultrametric
Spaces

Let K ≡ (K, | · |) be a valued field.
The map ∆ : K ×K → [0,∞), (a, b) 7→ |a− b|, is a metric on K
that induces a topology on K and makes K a topological field. We
say that (K, | · |) is complete if it is complete with respect to the
metric ∆.

If K is Archimedean and complete then K is topologically
isomorphic to R or C. Thus, almost all complete valued fields are
non-Archimedean.

Assume (K, | · |) is a non-Archimedean valued field. Then

(K, | · |) is an ultrametric space; i.e. the metric induced by | · |
satisfies the strong triangle inequality.

We have this way all examples of ultrametric spaces since each
ultrametric space can isometrically be embedded into a
non-Archimedean valued field.
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Some of the Unusual Properties of Ultrametric Spaces

Let (X,∆) be an ultrametric space.

Each point of a ball is a center.

Each ball in X is both open and closed (‘clopen’) and has an
empty boundary.

Two balls are either disjoint, or one is contained in the other.

If two balls B1 and B2 are disjoint, then

dist(B1, B2) = ∆(x, y) for each x ∈ B1, y ∈ B2
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The topology induced by ∆ is zero-dimensional, i.e. there is a
base of the topology consisting of clopen sets.

⇓
(X,∆) is totally disconnected.

There are no new values of an ultrametric after completion.

A sequence (xn)n in X is Cauchy if and only if
lim
n→∞

∆(xn, xn+1) = 0.

⇓

A student’s dream come true:

Given a1, a2, . . . in a complete ultrametric space
(non-Archimedean valued field) K, then

∞∑
n=1

an converges in K ⇐⇒ lim
n→∞

an = 0.
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Spherical completeness

Definition: An ultrametric space is called spherically complete if each
nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a
necessary and sufficient condition for the validity of the Hahn-Banach
theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the
converse is not always true. Nevertheless, the following lemma is a
partial converse.

Lemma: Suppose that (X,∆) is a Cauchy complete ultrametric space.
If 0 is the only accumulation point of the set ∆(X ×X) then (X,∆) is
spherically complete.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 12 / 39



Spherical completeness

Definition: An ultrametric space is called spherically complete if each
nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a
necessary and sufficient condition for the validity of the Hahn-Banach
theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the
converse is not always true. Nevertheless, the following lemma is a
partial converse.

Lemma: Suppose that (X,∆) is a Cauchy complete ultrametric space.
If 0 is the only accumulation point of the set ∆(X ×X) then (X,∆) is
spherically complete.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 12 / 39



Spherical completeness

Definition: An ultrametric space is called spherically complete if each
nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a
necessary and sufficient condition for the validity of the Hahn-Banach
theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the
converse is not always true. Nevertheless, the following lemma is a
partial converse.

Lemma: Suppose that (X,∆) is a Cauchy complete ultrametric space.
If 0 is the only accumulation point of the set ∆(X ×X) then (X,∆) is
spherically complete.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 12 / 39



Spherical completeness

Definition: An ultrametric space is called spherically complete if each
nested sequence of balls has a non-empty intersection.

Remark: The concept of spherical completeness plays a key role as a
necessary and sufficient condition for the validity of the Hahn-Banach
theorem in the non-Archimedean context.

A spherically complete ultrametric space is Cauchy complete, but the
converse is not always true. Nevertheless, the following lemma is a
partial converse.

Lemma: Suppose that (X,∆) is a Cauchy complete ultrametric space.
If 0 is the only accumulation point of the set ∆(X ×X) then (X,∆) is
spherically complete.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 12 / 39



Two Important Attributes of Spherically Complete
Ultrametric Spaces

1 A stronger version of the fixed point theorem: every shrinking map
of a spherically complete ultrametric space has a unique fixed
point.

2 Existence of best approximations: Let Y 6= ∅ be a spherically
complete ultrametric space embedded in an ultrametric space X.
Then each x ∈ X has a best approximation in Y , i.e.
min{∆(y, x) : y ∈ Y } exists.
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Outline for Section 4

1 Non-Archimedean Valued Fields

2 Ultrametric Spaces

3 Examples of Non-Archimedean Valued Fields
The p-adic Fields
Ordered Fields
Hahn Fields

Levi-Civita Fields

4 The Levi-Civita Fields R and C
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The p-adic Fields

Let p be a prime number.

The p-adic valuation on Q is determined by

|a|p = p−r if a =
m

n
pr and m,n not divisible by p.

The completion of (Q, | · |p) is called (Qp, | · |p), the field of the
p-adic numbers. Its value group is {pn : n ∈ Z}.

Qp is locally compact and hence spherically complete; also
separable.
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Qp is not algebraically closed. | · |p can be extended uniquely to
the algebraic closure Qa

p; and the completion of
(
Qa
p, | · |p

)
is called

Cp, the field of the p-adic complex numbers.

Cp is no longer locally compact, but separable and algebraically
closed. Its value group is

{pr : r ∈ Q} ,

so the valuation is dense.

Cp is not spherically complete!
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Ordered Fields

Let K be an ordered field.

For x, y ∈ K∗, we say that x and y are comparable and we write
x ∼ y if there exist n,m ∈ N such that |x|0 < n|y|0 and
|y|0 < m|x|0, where

|a|0 := max{a,−a} =

{
a, if a ≥ 0

−a, if a < 0 .

∼ is an equivalence relation on K∗. The equivalence class of
x ∈ K∗ is denoted by [x]; and the set of all the equivalence
classes (aka Archimedean classes) is denoted by GK .

GK is an ordered abelian group under the order ≺ and addition +
defined as follows: for every x, y ∈ K∗,

1 [x] ≺ [y] ⇐⇒ ∀n ∈ N, n|y|0 < |x|0; and
2 [x] + [y] := [xy].

The neutral element is [1K ], and −[x] = [x−1] for x ∈ K∗.
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Definition: An ordered field K is Archimedean if GK = {[1K ]},
that is when any two elements in K∗ are comparable.

Each Archimedean ordered field can be embedded in R.

Hans Hahn (1907) generalized this property and he ended up with
ordered fields that extend all the ordered fields with a given “level
of non-Archimedicity".
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Definition: Let E/K be an extension of ordered fields. The field
E is an Archimedean extension of K if every x ∈ E is comparable
to some y ∈ K. In that case, GE and GK are isomorphic ordered
groups. An ordered field K is called Archimedean complete if it
has no proper Archimedean extension fields.

Definition: Let K be an ordered field. If G is an ordered abelian
group isomorphic to GK , then we say that K is of type G and G is
called an Archimedean group of K.

The simplest Archimedean complete field is R, since it is (up to
isomorphism) the only Archimedean complete, ordered field of
type {0}. Archimedean complete fields of other types are given by
the general Hahn fields defined in the next result.
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General Hahn Fields

Theorem: Let K be a field (not necessarily ordered) and G an
ordered abelian group. The set

K((G)) := {f : G→ K : supp(f) is well-ordered},
where supp(f) := {x ∈ G : f(x) 6= 0}, is a field under the addition
and multiplication defined as follows:

1 (f + g)(x) := f(x) + g(x),
2 fg(x) :=

∑
a+b=x

f(a)g(b).

Fields of the form K((G)) are called general Hahn fields.

When K is an ordered field we can define an order on K((G)).

Definition: Let K be an ordered field and consider
λ : K((G))∗ → G, λ(f) = min{supp(f)}. For f, g ∈ K((G)) we
define:

f < g ⇔ f 6= g and (f − g)(λ(f − g)) < 0.

Then (K((G)),≤) is an ordered field.
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The next two results are the main features of the general Hahn fields
as ordered fields and mimic the relation between R and other ordered
Archimedean fields.

1 Hahn’s Embedding Theorem: If K is an ordered field, then for
every Archimedean group G of K, there exists an
order-preserving field monomorphism σ from K into R((G)) such
that R((G)) is an Archimedean extension of σ(K).

2 Hahn’s Completeness Theorem: If G is an ordered abelian
group then the field R((G)) is (up to isomorphism) the only
Archimedean complete, ordered field of type G.
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Hahn Fields

Definition: A Hahn field is a general Hahn field K((G)) for which G is
a subgroup of (R,+) and K is any field.

Theorem: Let G be a subgroup of (R,+) and K any field. If the map
| | : K((G))→ R is defined by

|f | :=

{
e−λ(f) if f 6= 0

0 if f = 0,

then (K((G)), | |) is a spherically complete non-Archimedean valued
field with residue class field isomorphic to K and value group
|K((G))∗| = {eg ∈ R : g ∈ G}.
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Levi-Civita Fields

Let K be any field and let G be a subgroup of (R,+). Then

L[G,K] := {f : G→ K |supp(f)∩(−∞, n] is finite for every n ∈ Z}

is a subfield of K((G)).

When we restrict the valuation of K((G)) to L[G,K], the latter
becomes a Cauchy complete, non-Archimedean valued field with
residue class field isomorphic to K and value group
|L[G,K]∗| = {eg : g ∈ G}.

Fields of the form L[G,K] are called Levi-Civita fields.
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Lemma: Let K be a field and let d : Q→ K be the function defined by

d(x) :=

{
1 if x = 1

0 if x 6= 1.

Then d is an element of the field L[Q,K]; and for any r ∈ Q, we have
that

d r(x) =

{
1 if x = r

0 if x 6= r.

Every nonzero element f ∈ L[Q,K] is the sum of a convergent
generalized power series with respect to the valuation on L[Q,K],
specifically:

f =
∑
r∈Q

f(r)d r =
∑

r∈ supp(f)

f(r)d r.
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Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Theorem: Let K be any field and G a subgroup of (R,+). Then

1 The following are equivalent:

K((G)) and L[G,K] coincide.

G is discrete.

L[G,K] is spherically complete.

2 If K is an ordered field, then K((G)) is an Archimedean extension
of L[G,K] with respect to the order. If, in addition, K is
Archimedean then both K((G)) and L[G,K] are of type G.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 25 / 39



Some general Hahn fields are real closed.

If K is a field and G an ordered abelian group, then K((G)) is real
closed if and only if K is real closed and G is divisible.

L[Q,K] is real closed if and only if K is real closed.

⇓

The Hahn field R((Q)) and the Levi-Civita field L[Q,R] are real
closed.

⇓

The Hahn field R((Q))(i) = C((Q)) and the Levi-Civita field
L[Q,R](i) = L[Q,C] are algebraically closed.
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Outline for Section 5

1 Non-Archimedean Valued Fields

2 Ultrametric Spaces

3 Examples of Non-Archimedean Valued Fields
The p-adic Fields
Ordered Fields
Hahn Fields

Levi-Civita Fields

4 The Levi-Civita Fields R and C
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Uniqueness of the Levi-Civita Fields R and C

Let R := L[Q,R] and C := L[Q,C].

R is the smallest Cauchy complete and real closed
non-Archimedean field extension of R.

It is small enough so that the R-numbers can be implemented on a
computer, thus allowing for computational applications.

C is the smallest Cauchy complete and algebraically closed
non-Archimedean field extension of C.
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Research Work on the Levi-Civita Fields

Topological Structure (Valuation topology and a weaker topology)

Power Series and Analytic Functions

Calculus on R

Measure Theory and Integration on R, R2 and R3

Optimization

Operator Theory

Computational Applications
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Differentiation of Computer Functions

Problem: The need for differentiation tools arises in many fields of
science. Usually, formula manipulators like Mathematica do not work
everywhere. For example,

f(x) = x2
√
|x|+ exp(x)

is differentiable at 0; but the attempt to compute its derivative using
formula manipulators may fail.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 30 / 39



Differentiation of Computer Functions

Problem: The need for differentiation tools arises in many fields of
science. Usually, formula manipulators like Mathematica do not work
everywhere. For example,

f(x) = x2
√
|x|+ exp(x)

is differentiable at 0; but the attempt to compute its derivative using
formula manipulators may fail.

Khodr Shamseddine (U of M) Non-Archimedean Fields and Applications March 9, 2021 30 / 39



Solution: Using the calculus on R, we formulate a necessary and
sufficient condition for the derivatives of functions representable on a
computer to exist, and show how to find these derivatives whenever
they exist.

Definition (Computer Functions): A function f : R→ R is called a
computer function if it can be obtained from intrinsic functions and the
Heaviside function through a finite number of arithmetic operations and
compositions.

Definition: Let f be a computer function, let x0 ∈ R be in the domain
of f , and let s ∈ R. Then f is extendable to x0 + s means x0 + s
belongs to the domain of f̄ , the continuation of f to R
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Theorem (Standard Form of Computer Functions): Let f be a real
computer function with domain of definition D, and let x0 ∈ D be such
that f is extendable to x0 ± d. Then there exists a real number σ > 0
such that, for 0 < x < σ,

f(x0 ± x) = A±0 (x) +

i±∑
i=1

xq
±
i A±i (x),

where A±i (x) is a power series with a radius of convergence no smaller
than σ, A±i (0) 6= 0, and q±i ∈ Q \ (N ∪ {0}), for i = 1, . . . , i±.
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Realization of our Goal

Lemma: Let f be a computer function. Then f is defined at x0 if and
only if f(x0) can be evaluated on a computer.

Lemma: Let f be a computer function that is defined at the real point
x0. Then f is extendable to x0 ± d if and only if f̄(x0 ± d) can be
evaluated on a computer.

Theorem: Let f be a computer function, and let x0 be such that
f̄(x0 − d), f(x0), and f̄(x0 + d) are all defined. Then f is continuous at
x0 if and only if

f̄(x0 − d) =0 f(x0) =0 f̄(x0 + d).
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Theorem: Let f be a computer function that is continuous at x0. Then
f is m times differentiable at x0 if and only if

f̄(x0 − d) =m f(x0) +

m∑
j=1

a−j d
j

and

f̄(x0 + d) =m f(x0) +

m∑
j=1

a+j d
j ,

with a+j = (−1)ja−j for j ∈ {1, . . . ,m}.

Moreover, in this case

f (j)(x0) = j!a+j = (−1)jj!a−j .

for all j ∈ {1, . . . ,m}.
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Example

g(x) =

sin
(
x3 + 2x+ 1

)
+ 3+cos(sin(ln|1+x|))

exp
(
tanh

(
sinh

(
cosh

(
sin(cos(tan(exp(x))))

cos(sin(exp(tan(x+2))))

))))
2 + sin (sinh (cos (tan−1 (ln (exp(x) + x2 + 3)))))

.
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Table: g(n)(0), 0 ≤ n ≤ 10, computed using R calculus

Order n g(n)(0) CPU Time
0 1.004845319007115 1.820 msec
1 0.4601438089634254 2.070 msec
2 −5.266097568233224 3.180 msec
3 −52.82163351991485 4.830 msec
4 −108.4682847837855 7.700 msec
5 16451.44286410806 11.640 msec
6 541334.9970224757 18.050 msec
7 7948641.189364974 26.590 msec
8 −144969388.2104904 37.860 msec
9 −15395959663.01733 52.470 msec
10 −618406836695.3634 72.330 msec
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Table: g(n)(0), 0 ≤ n ≤ 6, computed using R calculus

Order n g(n)(0) CPU Time
0 1.004845319007115 1.820 msec
1 0.4601438089634254 2.070 msec
2 −5.266097568233224 3.180 msec
3 −52.82163351991485 4.830 msec
4 −108.4682847837855 7.700 msec
5 16451.44286410806 11.640 msec

Table: g(n)(0), 0 ≤ n ≤ 6, computed with Mathematica

Order n g(n)(0) CPU Time
0 1.004845319007116 110 msec
1 0.4601438089634254 170 msec
2 −5.266097568233221 470 msec
3 −52.82163351991483 2, 570 msec
4 −108.4682847837854 14, 740 msec
5 16451.44286410805 77, 500 msec
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d−n thanks

for some n ∈ N!
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