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Overview

(Schauder 1927) Let X be an infinite-dimensional normed linear space. A sequence
{en}n in X is called a Schauder basis of X if for every x ∈ X there is a unique
sequence of scalars (an), the coordinates of x , such that x =

∑
n anen.

(Grinblyun 1949, Mazur 1953, Sanders 1965)
A sequence (Dn) of non-trivial linear subspaces of a Banach space X is a Schauder
decomposition of X if for each x ∈ X there is a unique sequence (xn)n , xn ∈ Dn for
every n ∈ N such that x = limm

∑m
n=1 xn and associated orthogonal projections {Pn},

Pn (X ) = Dn, n ∈ N and Pk ◦ Pj = 0 when k 6= j defined by Pn (x) = xn are continuous.

A Schauderbasis decompose a Banach space into a direct sum of one-dimensional
subspaces.
=⇒ Hence, every Banach space with a Schauderbasis has a Schauder decomposition

Not every Banach space has a Schauder decomposition:
(Dean, 1967) l∞ has no Schauder decomposition

(Gowers and Maurey, 1993): There is a separable Banach space (a linear subspace of
the space of Gowers and Maurey) with no Schauder decomposition
=⇒A Schauder decomposition appears as a generalization of the concept of a
Schauderbasis
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A finite-dimensional decomposition

A Schauderbasis decompose a Banach space into a direct sum of one-dimensional
subspaces.

A sequence (Dn) of finite-dimensional subspaces of a Banach space X is called a
finite dimensional decomposition (FDD) for X , we write X =

∑
n Dn there is a unique

sequence (xn)n , xn ∈ Dn for every n ∈ N such that x = limm
∑m

n=1 xn.

We say that a Banach space with a finite dimensional decomposition has the Finite
Dimensional Decomposition Property (FDDP)

=⇒ Every Banach space with a Schauderbasis has the FDDP.

(Szarek, 1987) The example of a separable Banach space with FDD which fails to have
a basis.
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Non-Archimedean notations and concepts (1)

K - denotes a non-trivial non-archimedean valued field, complete with the metric
induced by a non-Archimedean valuation:
a map |.| : K → [0,∞) such that:

|λ| = 0 if and only if λ = 0,

|λµ| = |λ| · |µ| ,
|λ+ µ| ≤ max {|λ| , |µ|}

K is called spherically complete if every nested sequence of balls (BK ,rn (λn))n in K has
a nonempty intersection, otherwise, we will say that K is non-spherically complete

Examples:

spherically complete: Qp

non-spherically complete: Cp
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Non-Archimedean notations and concepts (2)

Let E be a non–Archimedean normed space over K .

The norm, defined on E is called non-archimedean if it satisfies the strong triangle
inequality:

||x + y || ≤ max {||x || , ||y ||}
for all x , y ∈ E
If (Di )i∈I is a family of subspaces of E , then the linear hull of

⋃
i∈I Di is denoted by∑

i∈I Di .
Two subspaces D1, D2 of E are called orthogonal ( D1 ⊥ D2) if
‖d1 + d2‖ = max{‖d1‖, ‖d2‖} for all d1 ∈ D1, d2 ∈ D2.
The set {xi}i∈I ⊂ E , xi 6= 0, is called an orthogonal base of E if

||
∑
j∈J

λjxj || ≥ max
j∈J
{||λjxj ||}

for every finite subset J ⊂ I and all λj ⊂ K (j ∈ J) and every x ∈ E has an unequivocal
expansion

x =
∑
i∈I

λixi (λi ∈ K , i ∈ I) .

We say that E is of countable type if it contains a countable set whose linear span is
dense in E . If K is separable, then E is of countable type⇐⇒ E is separable.

Every non-archimedean Banach space of countable type has a Schauderbasis, hence
a finite dimensional decomposition.
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The orthogonal finite-dimensional decomposition property

Let (Di )i∈I be a system of non-Archimedean Banach spaces.
An orthogonal direct sum

⊕
i∈I Di is the space of all (xi )i∈I ∈

∏
i∈I

Di for which
limi ||xi || = 0, normed by (xi )i∈I 7−→ maxi∈I ||xi || .

(C. Perez-Garcia, W. Schikhof, 2014) We say that a NA Banach space E has the
orthogonal finite-dimensional decomposition property (OFDDP) if E can be expressed
as the orthogonal direct sum of a system of finite-dimensional linear subspaces (Di )i∈I :
Then,

Di ⊥
∑

j 6=i Dj for all i ∈ I

every x ∈
⊕

i∈I Di can be written as x =
∑

i∈I di , where di ∈ Di for all i ∈ I.

Remark

An orthogonal base decomposes a Banach space into a direct sum of one-dimensional
subspaces =⇒ Every Banach space with an orthogonal base has the orthogonal
finite-dimensional decomposition property
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The orthogonal finite-dimensional decomposition property - properties

Remark

If K is spherically complete then every finite-dimensional space has an orthogonal
base. =⇒ E has the orthogonal finite-dimensional decomposition property if and
only if E has an orthogonal base.

If K is spherically complete then the class of Banach spaces with the orthogonal
finite-dimensional decomposition property = the class of Banach spaces with an
orthogonal base

If K is not spherically complete =⇒there exist various kinds of finite-dimensional
spaces without orthogonal base,

for these K the class of NA Banach spaces with the OFDDP can be viewed as a
natural proper generalization of the class of NA Banach spaces with an orthogonal
base.
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Example of a Banach space of countable type with OFDDP, having no
orthogonal base.

Let K be non-spherically complete

let (BK ,rn (cn))n be a nested sequence of closed balls in K with an empty
intersection.

The formula
||(x1, x2)||v := lim

n→∞
|x1 − x2cn| , (x1, x2) ∈ K 2,

defines a non-archimedean norm on the linear space K 2.

The normed space K 2
v =

(
K 2, ||.||v

)
has no orthogonal base

=⇒ The space K 2
v
⊕

c0 has the OFDDP, but it has no orthogonal base.

Remark

(W. Śliwa, 2000): A non-archimedean Frechet space of countable type without a
Schauderbasis but having a finite-dimensional Schauder decomposition
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(W. Śliwa, 2000): A non-archimedean Frechet space of countable type without a
Schauderbasis but having a finite-dimensional Schauder decomposition

A. Kubzdela (Poznan) FDDP for NA Banach spaces p-adics.2021 9 / 17



Example of a Banach space of countable type with OFDDP, having no
orthogonal base.

Let K be non-spherically complete

let (BK ,rn (cn))n be a nested sequence of closed balls in K with an empty
intersection.

The formula
||(x1, x2)||v := lim

n→∞
|x1 − x2cn| , (x1, x2) ∈ K 2,

defines a non-archimedean norm on the linear space K 2.

The normed space K 2
v =

(
K 2, ||.||v

)
has no orthogonal base

=⇒ The space K 2
v
⊕

c0 has the OFDDP, but it has no orthogonal base.

Remark
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The metric approximation property vs OFDDP

A non-archimedean normed space E has the metric approximation property (MAP) if
the identity on E can be approximated pointwise by finite rank operators of norm 1.

Theorem (C. Perez-Garcia, W. Schikhof, 2014)

A non-Arichimedean Banach space with the OFDDP has the MAP

( sketch of the proof:
⊕

i∈I Di has the MAP if and only if each Di has the MAP,
finite-dimensional spaces trivially have the MAP.)

Remark

The converse is not true.

(A. Kubzdela, 2008): There is a closed linear subspace of l∞ (over non-spherically
complete K ) having the MAP but not the OFDDP.

Theorem (C. Perez-Garcia, W. Schikhof, 2014)

A non-Archimedean Banach space of countable type has the MAP if and only if it has
the OFDDP.
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Problem: Is the OFDDP hereditary to linear subspace?

Let E be a NA Banach space with the OFDDP and D be its linear subspace.

Theorem (C. Perez-Garcia, W. Schikhof, 2014)

Then D has the OFDDP if one of the following conditions satisfied:

D is finite-dimensional

D is orthocomplemented in E

D is dense in E

Theorem (C. Perez-Garcia,A.Kubzdela, 2014)

Assume E = FE
⊕

GE , where FE and GE are closed subspaces of E and GE has an
orthogonal base. Let D be an n−codimensional subspace of E (n ∈ N). Then, there
exist u1, . . . , un ∈ E and closed subspaces FD,GD ⊂ E such that
FD ⊂ FE + [u1, . . . , un], GD has an orthogonal base and D = FD

⊕
GD .

Corollary

If E = FE
⊕

GE has the OFDDP, where FE and GE are closed subspaces of E and GE

has an orthogonal base then every finitely−codimensional subspace of E has the
OFDDP.
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Example of a Banach space of countable type with the OFDDP having
a one-codimensional subspace without the OFDDP (1).

Let K be non-spherically complete NA valued field, K̂ denotes the spherical completion
of K .

K̂ will be considered as a Banach space over K with the norm given by its
valuation,

there is no non-zero element of K̂ that is orthogonal to K

Choose λ1, λ2, . . . ∈ K̂\K with ||λk || = 1 for all k ∈ N and such that
r := dist (λ1,K ) = dist (λk ,K ) for all k ≥ 2.

Recall that, for each k , dist (λk ,K ) is not attained.

Λ := {λ1, λ2, . . .}.
l∞(K̂ ) - the space of all bounded sequences of elements of K̂

EΛ := [e1, λ1e1, e2, λ2e2, . . .] ⊂ l∞(K̂ ), with the restricted sup-norm (e1, e2, . . . are
the usual unit vectors of KN).
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Example of a Banach space of countable type with the OFDDP having
a one-codimensional subspace without the OFDDP(2).

K is non-spherically complete NA valued field, K̂ is the spherical completion of K .
EΛ := [e1, λ1e1, e2, λ2e2, . . .] ⊂ l∞(K̂ ),
EΛ is a K -Banach space of countable type with the OFDDP, as EΛ =

⊕
k Dk ,

where Dk := [ek , λk ek ], k ∈ N.
Define orthogonal sets X1 := {e1, e2, . . .}, X2 := {λ1e1 + λ2e2, λ1e1 + λ3e3, . . .}
and DΛ := [X1 ∪ X2]
Then DΛ is a one-codimensional (hence closed) subspace of EΛ, since
EΛ = DΛ + [λ1e1] and λ1e1 6∈ DΛ.

For such λ1, λ2, . . . ∈ K̂\K we define a relation ∼ on Λ := {λ1, λ2, . . .} by

λi ∼ λj if there exist a, b ∈ K such that aλi + b ∈ B̂ (λj , r), B̂ (λj , r) is a ball in K̂ .

Theorem (C. Perez-Garcia,A.Kubzdela, 2014)

DΛ has the OFDDP if and only if Λ has finitely many equivalence classes with
respect to ∼.

Let K := Cp - the completion of the algebraic closure of the field Qp. There exist
infinite sets Λ1,Λ2 ⊂ K̂\K such that DΛ1 ⊂ EΛ1 has the OFDDP, and DΛ2 ⊂ EΛ2 has
not the OFDDP.
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EΛ := [e1, λ1e1, e2, λ2e2, . . .] ⊂ l∞(K̂ ),
EΛ is a K -Banach space of countable type with the OFDDP, as EΛ =

⊕
k Dk ,

where Dk := [ek , λk ek ], k ∈ N.
Define orthogonal sets X1 := {e1, e2, . . .}, X2 := {λ1e1 + λ2e2, λ1e1 + λ3e3, . . .}
and DΛ := [X1 ∪ X2]
Then DΛ is a one-codimensional (hence closed) subspace of EΛ, since
EΛ = DΛ + [λ1e1] and λ1e1 6∈ DΛ.

For such λ1, λ2, . . . ∈ K̂\K we define a relation ∼ on Λ := {λ1, λ2, . . .} by

λi ∼ λj if there exist a, b ∈ K such that aλi + b ∈ B̂ (λj , r), B̂ (λj , r) is a ball in K̂ .

Theorem (C. Perez-Garcia,A.Kubzdela, 2014)

DΛ has the OFDDP if and only if Λ has finitely many equivalence classes with
respect to ∼.

Let K := Cp - the completion of the algebraic closure of the field Qp. There exist
infinite sets Λ1,Λ2 ⊂ K̂\K such that DΛ1 ⊂ EΛ1 has the OFDDP, and DΛ2 ⊂ EΛ2 has
not the OFDDP.
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Final Reflection

1 Other possible applications of Orthogonal Finite Dimensional Decompositions of
non-Archimean Banach spaces

2 Further partial affirmative solutions of the problem: " Is the OFDDP stable for
linear subspaces?"
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... thanks for the attention
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