On metrizable subspaces and quotients of non-Archimedean spaces $C_p(X, K)$

JERZY KÁKOL

A. Mickiewicz University, Poznań and Czech Academy of Sciences, Prague

Conference on p-adic mathematical physics and its applications, May 17–28 2021 Joint work with Wiesław Śliwa

- Image: Image: Markov ma
- Por all α, β ∈ K we have |α + β| ≤ max{|α|, |β|}; if additionally |α| ≠ |β|, then |α + β| = max{|α|, |β|}.
- E linear space over \mathbb{K} . A **seminorm** on E is a function $p: E \to [0, \infty)$ such that $p(\alpha x) = |\alpha|p(x)$ for all $\alpha \in \mathbb{K}, x \in E$ and $p(x + y) \le \max\{p(x), p(y)\}$ for all $x, y \in E$.
- X infinite ultraregular space i.e. an infinite Hausdorff topological space such that the clopen subsets of X form a basis for the topology of X. C_p(X, K) is isomorphic to some dense subspace of K^X with the product topology. Thus C_p(X, K) is metrizable if and only if X is countable.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

Let X be an infinite ultraregular space. Does $C_p(X, \mathbb{K})$ admit

- an infinite-dimensional [closed] metrizable subspace?
- an infinite-dimensional complemented metrizable subspace?
- an infinite-dimensional metrizable quotient?

Let X be an infinite ultraregular space. Does $C_p(X, \mathbb{K})$ admit

- an infinite-dimensional [closed] metrizable subspace?
- an infinite-dimensional complemented metrizable subspace?
- In infinite-dimensional metrizable quotient?

We say that a locally convex space E contains a complemented copy of a locally convex space F if there exist a closed vector subspace $G \subset E$ such that G is isomorphic to F and a closed vector subspace L of E such that $E = G \oplus L$.

Let $c_0(\mathbb{N}, \mathbb{K})$ be the space of all sequences in \mathbb{K} that are convergent to 0 with the topology of pointwise convergence.

Theorem 2

Let X be an infinite ultraregular space [with an infinite compact subset]. Then $C_p(X, \mathbb{K})$ has an infinite-dimensional [closed] metrizable subspace isomorphic to $c_0(\mathbb{N}, \mathbb{K})$.

Let $c_0(\mathbb{N}, \mathbb{K})$ be the space of all sequences in \mathbb{K} that are convergent to 0 with the topology of pointwise convergence.

Theorem 2

Let X be an infinite ultraregular space [with an infinite compact subset]. Then $C_p(X, \mathbb{K})$ has an infinite-dimensional [closed] metrizable subspace isomorphic to $c_0(\mathbb{N}, \mathbb{K})$.

 In particular, for any infinite ultraregular compact space X the space C_p(X, K) has an infinite-dimensional closed metrizable subspace isomorphic to c₀(N, K).

Let $c_0(\mathbb{N}, \mathbb{K})$ be the space of all sequences in \mathbb{K} that are convergent to 0 with the topology of pointwise convergence.

Theorem 2

Let X be an infinite ultraregular space [with an infinite compact subset]. Then $C_p(X, \mathbb{K})$ has an infinite-dimensional [closed] metrizable subspace isomorphic to $c_0(\mathbb{N}, \mathbb{K})$.

- In particular, for any infinite ultraregular compact space X the space C_p(X, K) has an infinite-dimensional closed metrizable subspace isomorphic to c₀(N, K).
- If X is discrete, $C_p(X, \mathbb{K}) = \mathbb{K}^X$, so any closed subspace of $C_p(X, \mathbb{K})$ is isomorphic to \mathbb{K}^A for some $A \subset X$. Thus any infinite-dimensional closed metrizable subspace of $C_p(X, \mathbb{K})$ is isomorphic to $\mathbb{K}^{\mathbb{N}}$; in particular, $C_p(X, \mathbb{K})$ has no closed subspace isomorphic to $c_0(\mathbb{N}_{\mathbb{P}}\mathbb{K})$ → $(\mathbb{R} \times \mathbb{R}^2)$ for extraple subspaces and quotients of non-Archimedean subspace

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

Let X be an ultraregular space. For a point x ∈ X let δ_x : C_p(X, K) → K, δ_x(f) = f(x), be the Dirac measure concentrated at x. The linear hull L_p(X, K) of the set {δ_x : x ∈ X} in K^{C_p(X,K)} can be identified with the topological dual of C_p(X, K).

- Let X be an ultraregular space. For a point x ∈ X let δ_x : C_p(X, K) → K, δ_x(f) = f(x), be the Dirac measure concentrated at x. The linear hull L_p(X, K) of the set {δ_x : x ∈ X} in K^{C_p(X,K)} can be identified with the topological dual of C_p(X, K).
- Each μ ∈ L_p(X, K) can be uniquely written as a linear combination of Dirac measures μ = ∑_{x∈F} α_xδ_x for some finite subset F of X and some non-zero scalars α_x for x ∈ F; the set F is called the support of μ and is denoted by supp(μ). The real number max_{x∈F} |α_x| will be denoted by ||μ||; for μ = 0 we have supp(μ) = Ø and ||μ|| = 0.

向下 イヨト イヨト 三日

Josefson-Nissenzweig theorem: For each infinite-dimensional Banach space F over \mathbb{R} or \mathbb{C} there exists a sequence (μ_n) in the topological dual F^* of F such that $\|\mu_n\| = 1, n \in \mathbb{N}$, with $\mu_n(f) \to 0 \forall f \in F$.

Josefson-Nissenzweig theorem: For each infinite-dimensional Banach space F over \mathbb{R} or \mathbb{C} there exists a sequence (μ_n) in the topological dual F^* of F such that $\|\mu_n\| = 1, n \in \mathbb{N}$, with $\mu_n(f) \to 0 \forall f \in F$.

Definition 3

Let X be an infinite ultraregular space. We say that the space $C_p(X, \mathbb{K})$ has the Josefson-Nissenzweig property (JNP in short) if there exists a sequence $(\mu_n) \subset L_p(X, \mathbb{K})$ such that $\|\mu_n\| = 1, n \in \mathbb{N}$, and $\mu_n(f) \to_n 0$ for every $f \in C_p(X, \mathbb{K})$.

伺い イラト イラト

- C_p(X, K) contains a complemented subspace isomorphic to c₀(N, K);
- $C_p(X, \mathbb{K})$ has a quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ admits a linear continuous map onto $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ has the JNP.

- C_p(X, K) contains a complemented subspace isomorphic to c₀(N, K);
- $C_p(X, \mathbb{K})$ has a quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ admits a linear continuous map onto $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ has the JNP.

- C_p(X, K) contains a complemented subspace isomorphic to c₀(N, K);
- $C_p(X, \mathbb{K})$ has a quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ admits a linear continuous map onto $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ has the JNP.
- For each infinite ultraregular compact space X the Banach space (C(X, K), || · ||∞) contains a complemented subspace isomorphic to (c₀(N, K), || · ||∞).

- C_p(X, K) contains a complemented subspace isomorphic to c₀(N, K);
- $C_p(X, \mathbb{K})$ has a quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ admits a linear continuous map onto $c_0(\mathbb{N}, \mathbb{K})$;
- $C_p(X, \mathbb{K})$ has the JNP.
- For each infinite ultraregular compact space X the Banach space (C(X, K), || · ||∞) contains a complemented subspace isomorphic to (c₀(N, K), || · ||∞).
- e Hence, there exists a sequence (µ_n) converging to zero in the weak*-topology with ||µ_n|| = 1 for all n ∈ N.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

Consider on the Banach space (C(X, K), || · ||∞) a weaker poinwise topology generating the space C_p(X, K).

- Consider on the Banach space (C(X, K), || · ||∞) a weaker poinwise topology generating the space C_p(X, K).
- We know already that (C(X, K), || · ||_∞) contains a complemented subspace isomorphic to (c₀(N, K), || · ||_∞).

- Consider on the Banach space (C(X, K), || · ||∞) a weaker poinwise topology generating the space C_p(X, K).
- We know already that (C(X, K), || · ||_∞) contains a complemented subspace isomorphic to (c₀(N, K), || · ||_∞).
- Assume that an ultraregular space X contains an non-trivial convergent sequence. Then C_p(X, K) has a complemented subspace isomorphic to c₀(N, K).

伺 と く ヨ と く ヨ と 二 ヨ

- Consider on the Banach space (C(X, K), || · ||∞) a weaker poinwise topology generating the space C_p(X, K).
- We know already that (C(X, K), || · ||∞) contains a complemented subspace isomorphic to (c₀(N, K), || · ||∞).
- Assume that an ultraregular space X contains an non-trivial convergent sequence. Then C_p(X, K) has a complemented subspace isomorphic to c₀(N, K).
- This motivates a natural question if C_p(X, K) contains a complemented copy of c₀(N, K) (with the pointwise topology of the space K^N) for each infinite ultraregular compact space.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The answer is negative. In fact, we have the following fact which combined with Theorem 4 answers in the negative the above question.

Corollary 5

There exists a compact ultraregular space X such that for every sequence $(\mu_n) \subset L_p(X, \mathbb{K})$ with $\mu_n(f) \to_n 0$ for every $f \in C_p(X, \mathbb{K})$, we have $\|\mu_n\| \to 0$. The answer is negative. In fact, we have the following fact which combined with Theorem 4 answers in the negative the above question.

Corollary 5

There exists a compact ultraregular space X such that for every sequence $(\mu_n) \subset L_p(X, \mathbb{K})$ with $\mu_n(f) \to_n 0$ for every $f \in C_p(X, \mathbb{K})$, we have $\|\mu_n\| \to 0$.

• We provide more concrete situations illustrating above general information.

The answer is negative. In fact, we have the following fact which combined with Theorem 4 answers in the negative the above question.

Corollary 5

There exists a compact ultraregular space X such that for every sequence $(\mu_n) \subset L_p(X, \mathbb{K})$ with $\mu_n(f) \to_n 0$ for every $f \in C_p(X, \mathbb{K})$, we have $\|\mu_n\| \to 0$.

- We provide more concrete situations illustrating above general information.
- We propose the following theorem.

A topological space is called **extremally disconnected** if it is regular and the closure of every open set is open.

A topological space is called **extremally disconnected** if it is regular and the closure of every open set is open.

Theorem 6

Let X be an extremally disconnected compact space. Then there exists no continuous linear surjection $T : C_p(X, \mathbb{K}) \to c_0(\mathbb{N}, \mathbb{K})$. In particular, $C_p(X, \mathbb{K})$ has no quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$ (and so, no complemented subspace isomorphic to $c_0(\mathbb{N}, \mathbb{K})$). A topological space is called **extremally disconnected** if it is regular and the closure of every open set is open.

Theorem 6

Let X be an extremally disconnected compact space. Then there exists no continuous linear surjection $T: C_p(X, \mathbb{K}) \to c_0(\mathbb{N}, \mathbb{K})$. In particular, $C_p(X, \mathbb{K})$ has no quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$ (and so, no complemented subspace isomorphic to $c_0(\mathbb{N}, \mathbb{K})$).

Corollary 7

Let D be a discrete space. Then $C_p(\beta D, \mathbb{K})$ has no quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$. In particular, $C_p(\beta \mathbb{N}, \mathbb{K})$ has no quotient isomorphic to $c_0(\mathbb{N}, \mathbb{K})$.

イロン 不同 とくほう イロン

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

 A sequence (x_n) ⊂ K is said to be relatively compact if the set {x_n : n ∈ N} is relatively compact in K.

A 3 b

- A sequence (x_n) ⊂ K is said to be relatively compact if the set {x_n : n ∈ N} is relatively compact in K.
- ② Denote by ℓ_c(N, K) the space of all relatively compact sequences in K and by ℓ_∞(N, K) the space of all bounded sequences in K with the topology of pointwise convergence.

伺下 イヨト イヨト ニヨ

- A sequence (x_n) ⊂ K is said to be relatively compact if the set {x_n : n ∈ N} is relatively compact in K.
- ② Denote by ℓ_c(N, K) the space of all relatively compact sequences in K and by ℓ_∞(N, K) the space of all bounded sequences in K with the topology of pointwise convergence.
- Clearly, ℓ_c(N, K) and ℓ_∞(N, K) are linear subspace of the Fréchet spaces K^N and c₀(N, K) ⊂ ℓ_c(N, K) ⊂ ℓ_∞(N, K).

伺下 イヨト イヨト ニヨ

- A sequence (x_n) ⊂ K is said to be relatively compact if the set {x_n : n ∈ N} is relatively compact in K.
- Obenote by ℓ_c(N, K) the space of all relatively compact sequences in K and by ℓ_∞(N, K) the space of all bounded sequences in K with the topology of pointwise convergence.
- Clearly, ℓ_c(N, K) and ℓ_∞(N, K) are linear subspace of the Fréchet spaces K^N and c₀(N, K) ⊂ ℓ_c(N, K) ⊂ ℓ_∞(N, K).
- Although Corollary 7 shows that for discrete space D the space C_p(βD, K) has no quotient isomorphic to c₀(N, K), our next theorem describes concrete infinite-dimensional metrizable quotients for spaces C_p(βD, K) when D is an infinite discrete space.

イロト イポト イヨト イヨト 二日

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

D – infinite discrete space. Then $E = C_p(\beta D, \mathbb{K})$ has an inf.inite-dim. metrizable quotient: For each sequence $F = (F_n)$ of non-empty, finite, pairwise disjoint $F_n \subset D$, $|F_n| \to \infty$ and

$$Y_F = \{f \in E : \sum_{x \in F_n} f(x) = 0 \text{ for every } n \in \mathbb{N}\},$$

 E/Y_F is isomorphic to $\ell_c^G(\mathbb{N}, \mathbb{K}) = \{ (\sum_{s \in G_n} y_s)_{n=1}^{\infty} : (y_s) \in \ell_c(\mathbb{N}, \mathbb{K}) \} \subset \mathbb{K}^{\mathbb{N}}, \text{ where}$ $G = (G_n) \text{ is a partition of } \mathbb{N}, |G_n| = |F_n|. \text{ In particular } E \text{ has a}$ quotient isomorphic to

$$\ell^0_c(\mathbb{N},\mathbb{K})=\{(\sum_{2^{n-1}\leq s<2^n}y_s)_{n=1}^\infty:(y_s)\in\ell_c(\mathbb{N},\mathbb{K})\}.$$

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

If K is locally compact and Y is a compact subset of an ultraregular space X, every continuous function g : Y → K has an extension to some bounded continuous function f : X → K. Hence

 $C_{\rho}(X,\mathbb{K}) o C_{\rho}(Y,\mathbb{K}), f o f|Y$ is a quotient map.

• • • • • • • • • • • •

- If K is locally compact and Y is a compact subset of an ultraregular space X, every continuous function g : Y → K has an extension to some bounded continuous function f : X → K. Hence
 C_p(X, K) → C_p(Y, K), f → f|Y is a quotient map.
- If \mathbb{K} is locally compact, then we have the following $\ell_c^0(\mathbb{N},\mathbb{K}) = \ell_{\infty}(\mathbb{N},\mathbb{K}) = \ell_c(\mathbb{N},\mathbb{K}).$

- If K is locally compact and Y is a compact subset of an ultraregular space X, every continuous function g : Y → K has an extension to some bounded continuous function f : X → K. Hence
 C_p(X, K) → C_p(Y, K), f → f|Y is a quotient map.
- If \mathbb{K} is locally compact, then we have the following $\ell_c^0(\mathbb{N},\mathbb{K}) = \ell_{\infty}(\mathbb{N},\mathbb{K}) = \ell_c(\mathbb{N},\mathbb{K}).$
- Let X be an infinite extremally disconnected compact space. If K is locally compact, then C_p(X, K) has an infinite-dimensional metrizable quotient isomorphic to ℓ_∞(N, K).

高 とう きょう く ほ とう ほう

- If K is locally compact and Y is a compact subset of an ultraregular space X, every continuous function g : Y → K has an extension to some bounded continuous function f : X → K. Hence
 C_p(X, K) → C_p(Y, K), f → f|Y is a quotient map.
- If K is locally compact, then we have the following $\ell^0_c(\mathbb{N}, \mathbb{K}) = \ell_\infty(\mathbb{N}, \mathbb{K}) = \ell_c(\mathbb{N}, \mathbb{K}).$
- Let X be an infinite extremally disconnected compact space. If K is locally compact, then C_p(X, K) has an infinite-dimensional metrizable quotient isomorphic to ℓ_∞(N, K).
- *D* infinite discrete space. If \mathbb{K} is locally compact, $C_p(\beta D, \mathbb{K})$ has a quotient isomorphic to $\ell_{\infty}(\mathbb{N}, \mathbb{K})$. In particular, $C_p(\beta D, \mathbb{Q}_q)$ has a quotient isomorphic to $\ell_{\infty}(\mathbb{N}, \mathbb{Q}_q)$ for any prime number *q*.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

伺 ト く ヨ ト く ヨ ト

э

Theorem 9

Let D be an infinite discrete space. Then $C_p(\beta D, \mathbb{K})$ has a quotient isomorphic to $\ell_c(\mathbb{N}, \mathbb{K})$.

Theorem 9

Let D be an infinite discrete space. Then $C_p(\beta D, \mathbb{K})$ has a quotient isomorphic to $\ell_c(\mathbb{N}, \mathbb{K})$.

Corollary 10

Let D be an infinite discrete space. Then for any prime number q the space $C_p(\beta D, \mathbb{C}_q)$ has a quotient isomorphic to the space $\ell_c(\mathbb{N}, \mathbb{C}_q)$.

Theorem 9

Let D be an infinite discrete space. Then $C_p(\beta D, \mathbb{K})$ has a quotient isomorphic to $\ell_c(\mathbb{N}, \mathbb{K})$.

Corollary 10

Let D be an infinite discrete space. Then for any prime number q the space $C_p(\beta D, \mathbb{C}_q)$ has a quotient isomorphic to the space $\ell_c(\mathbb{N}, \mathbb{C}_q)$.

Recall that \mathbb{C}_q is not locally compact.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

A compact space X is called an **Efimov space** if X contains neither non-trivial convergent sequences nor copies of $\beta \mathbb{N}$. The famous long-standing open question, called the Efimov problem, asks whether there exists an Efimov space in ZFC. A compact space X is called an **Efimov space** if X contains neither non-trivial convergent sequences nor copies of $\beta \mathbb{N}$. The famous long-standing open question, called the Efimov problem, asks whether there exists an Efimov space in ZFC. The only known examples of Efimov spaces have been found under additional set-theoretic assumptions (for example, diamond principle \Diamond - combinatorial principle (Jensen (1972)) that holds in the constructible universe (L) and that implies the continuum hypothesis) – Fedorchuk, Dow, Efimov, Hart, De la Vega etc. Applying above results one gets:

A compact space X is called an **Efimov space** if X contains neither non-trivial convergent sequences nor copies of $\beta \mathbb{N}$. The famous long-standing open question, called the Efimov problem, asks whether there exists an Efimov space in ZFC. The only known examples of Efimov spaces have been found under additional set-theoretic assumptions (for example, diamond principle \Diamond - combinatorial principle (Jensen (1972)) that holds in the constructible universe (L) and that implies the continuum hypothesis) – Fedorchuk, Dow, Efimov, Hart, De la Vega etc. Applying above results one gets:

Corollary 11

If there exists an ultraregular compact space X such that $C_p(X, \mathbb{K})$ does not admit an infinite-dimensional metrizable quotient, then X must be Efimov.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

▲□▶ ▲御▶ ★≧▶ ★≧▶

5 9 Q (P

:

.

Example 12

Under \Diamond there exists ultraregular Efimov X such that $C_p(X, \mathbb{K})$ has an inf.-dimensional metrizable quotient.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 12

Under \Diamond there exists ultraregular Efimov X such that $C_p(X, \mathbb{K})$ has an inf.-dimensional metrizable quotient.

Proof.

There exists (\Diamond) ultraregular compact hereditary separable X (so not containing $\beta \mathbb{N}$) such that:

Example 12

Under \Diamond there exists ultraregular Efimov X such that $C_p(X, \mathbb{K})$ has an inf.-dimensional metrizable quotient.

Proof.

There exists (\Diamond) ultraregular compact hereditary separable X (so not containing $\beta \mathbb{N}$) such that:

X does not contain non-trivial convergent sequences. X has a base of clopen pairwise hemeomorphic sets. (De la Vega)

Example 12

Under \Diamond there exists ultraregular Efimov X such that $C_p(X, \mathbb{K})$ has an inf.-dimensional metrizable quotient.

Proof.

There exists (\Diamond) ultraregular compact hereditary separable X (so not containing $\beta \mathbb{N}$) such that:

X does not contain non-trivial convergent sequences. X has a base of clopen pairwise hemeomorphic sets. (De la Vega) **Then we showed**: X admits a sequence (K_n) of infinite compact subsets such that each K_n contains two disjoint subsets homeomorphic to K_{n+1} ; which applies to show $C_p(X, \mathbb{K})$ has an infinite-dimensional metrizable quotient. \Box One JERCY KAKOL

Let D be an infinite discrete space.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean s

御 と く ヨ と く ヨ と …

æ

Let D be an infinite discrete space.

 Let q be a prime number. Does the space C_p(βD, C_q) have a quotient isomorphic to ℓ_∞(N, C_q)?

-∢ ≣ ▶

Let D be an infinite discrete space.

- Let q be a prime number. Does the space C_p(βD, C_q) have a quotient isomorphic to l_∞(N, C_q)?
- Ooes the space C_p(βD, K) have a quotient isomorphic to ℓ_∞(N, K) for some not locally compact field K?

Let D be an infinite discrete space.

- Let q be a prime number. Does the space C_p(βD, C_q) have a quotient isomorphic to l_∞(N, C_q)?
- Ooes the space C_p(βD, K) have a quotient isomorphic to ℓ_∞(N, K) for some not locally compact field K?
- Does the space C_p(βD, K) have a quotient isomorphic to ℓ_∞(N, K) for every field K?