On metrizable subspaces and quotients of

non-Archimedean spaces C,(X, K)

JERZY KAKOL

A. Mickiewicz University, Poznann and Czech Academy of Sciences, Prague

Conference on p-adic mathematical physics and its
applications, May 17-28 2021

Joint work with Wiestaw Sliwa

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



@ K — non-trivially valued non-Archimedean complete
field.

Q@ For all o, 8 € K we have |a + 5| < max{|al, |5]|}; if
additionally |a| # |3, then |a + 8| = max{|«|, ||}

© E - linear space over K. A seminorm on E is a function
p: E — [0,00) such that p(ax) = |a|p(x) for all
a € K,x € E and p(x + y) < max{p(x), p(y)} for all
x,y € E.

© X —infinite ultraregular space i.e. an infinite Hausdorff
topological space such that the clopen subsets of X form
a basis for the topology of X. C,(X,K) is isomorphic to
some dense subspace of KX with the product topology.
Thus C,(X,K) is metrizable if and only if X is countable.
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Problem 1
Let X be an infinite ultraregular space. Does C,(X,K) admit

@ an infinite-dimensional [closed] metrizable subspace?

@ an infinite-dimensional complemented metrizable
subspace?

@ an infinite-dimensional metrizable quotient?

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



Problem 1
Let X be an infinite ultraregular space. Does C,(X,K) admit

@ an infinite-dimensional [closed] metrizable subspace?

@ an infinite-dimensional complemented metrizable

subspace?

@ an infinite-dimensional metrizable quotient?

We say that a locally convex space E contains a
complemented copy of a locally convex space F if there exist a
closed vector subspace G C E such that G is isomorphic to F
and a closed vector subspace L of E such that E = G & L.
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Let ¢o(N, K) be the space of all sequences in K that are
convergent to 0 with the topology of pointwise convergence.

Let X be an infinite ultraregular space [with an infinite

compact subset |. Then C,(X,K) has an infinite-dimensional
[closed | metrizable subspace isomorphic to cp(N, K).
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Let ¢o(N, K) be the space of all sequences in K that are
convergent to 0 with the topology of pointwise convergence.

Let X be an infinite ultraregular space [with an infinite

compact subset |. Then C,(X,K) has an infinite-dimensional
[closed | metrizable subspace isomorphic to cp(N, K).

© |In particular, for any infinite ultraregular compact space X
the space C,(X,K) has an infinite-dimensional closed
metrizable subspace isomorphic to (N, K).
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Let ¢o(N, K) be the space of all sequences in K that are
convergent to 0 with the topology of pointwise convergence.

Let X be an infinite ultraregular space [with an infinite
compact subset |. Then C,(X,K) has an infinite-dimensional
[closed | metrizable subspace isomorphic to cp(N, K).

© |In particular, for any infinite ultraregular compact space X
the space C,(X,K) has an infinite-dimensional closed
metrizable subspace isomorphic to (N, K).

@ If X is discrete, C,(X,K) = KX, so any closed subspace
of C,(X,K) is isomorphic to K# for some A C X. Thus
any infinite-dimensional closed metrizable subspace of
C,(X, K) is isomorphic to KY; in particular, C,(X,K) has
no closed subspace isomorphic to ¢(N;K).
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O Let X be an ultraregular space. For a point x € X let
Ix 1 Go(X,K) = K, d,(f) = f(x), be the Dirac measure
concentrated at x. The linear hull L,(X,K) of the set
{6, : x € X} in K%XK) can be identified with the
topological dual of C,(X,K).
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O Let X be an ultraregular space. For a point x € X let
Ix 1 Go(X,K) = K, d,(f) = f(x), be the Dirac measure
concentrated at x. The linear hull L,(X,K) of the set
{6, : x € X} in K%XK) can be identified with the
topological dual of C,(X,K).

@ Each p € L,(X,K) can be uniquely written as a linear
combination of Dirac measures /1 = ) . a,d, for some
finite subset F of X and some non-zero scalars a, for
x € F; the set F is called the support of i and is denoted
by supp(g). The real number max,cr |ay| will be denoted
by ||x4]|; for i = 0 we have supp(u) = 0 and ||z = 0.
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Josefson-Nissenzweig theorem: For each
infinite-dimensional Banach space F over R or C there exists a
sequence (/) in the topological dual F* of F such that

|pnll = 1,n € N, with p,(f) =0V f € F.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



Josefson-Nissenzweig theorem: For each
infinite-dimensional Banach space F over R or C there exists a
sequence (/) in the topological dual F* of F such that

|pnll = 1,n € N, with p,(f) =0V f € F.

Definition 3

Let X be an infinite ultraregular space. We say that the space
Co(X, K) has the Josefson-Nissenzweig property (JNP in
short) if there exists a sequence (u,) C L,(X,K) such that
lpnll =1,n €N, and p,(f) —, 0 for every f € C,(X, K).
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For inf. ultraregular X the following are equivalent:
@ C,(X,K) contains a complemented subspace isomorphic
to (N, K);
Q@ C,(X,K) has a quotient isomorphic to cp(N, K),
Q@ C,(X,K) admits a linear continuous map onto cy(N, K);
Q@ C,(X,K) has the JNP.
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For inf. ultraregular X the following are equivalent:
@ C,(X,K) contains a complemented subspace isomorphic
to (N, K);
Q@ C,(X,K) has a quotient isomorphic to cp(N, K),
Q@ C,(X,K) admits a linear continuous map onto cy(N, K);
Q@ C,(X,K) has the JNP.
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For inf. ultraregular X the following are equivalent:

@ C,(X,K) contains a complemented subspace isomorphic
to ¢ (N, K) 5
Co(X,K) has a quotient isomorphic to co(N, K),

© ©

Co(X, K) admits a linear continuous map onto cy(N, K);
Co(X,K) has the JNP.

©

© For each infinite ultraregular compact space X the
Banach space (C(X,K),| - ||oc) contains a complemented
subspace isomorphic to (co(N,K), || - [|oc)-
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For inf. ultraregular X the following are equivalent:

@ C,(X,K) contains a complemented subspace isomorphic
to ¢ (N, K) 5
Co(X,K) has a quotient isomorphic to co(N, K),

© ©

Co(X, K) admits a linear continuous map onto cy(N, K);

Co(X,K) has the JNP.

©

© For each infinite ultraregular compact space X the
Banach space (C(X,K),| - ||oc) contains a complemented
subspace isomorphic to (co(N, K), || - ||s0)-

@ Hence, there exists a sequence (u,) converging to zero in
the weak*-topology with ||x,|| =1 for all n € N.
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@ Consider on the Banach space (C(X,K), || - ||o) a weaker
poinwise topology generating the space C,(X,K).
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@ Consider on the Banach space (C(X,K), || - ||o) a weaker
poinwise topology generating the space C,(X,K).

@ We know already that (C(X,K), | - ||) contains a
complemented subspace isomorphic to (co(N, K), || - ||)-
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@ Consider on the Banach space (C(X,K), || - ||«) a weaker
poinwise topology generating the space C,(X,K).

@ We know already that (C(X,K), || - ||) contains a
complemented subspace isomorphic to (co(N, K), || - ||)-

© Assume that an ultraregular space X contains an
non-trivial convergent sequence. Then C,(X,K) has a
complemented subspace isomorphic to ¢(N, K).
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@ Consider on the Banach space (C(X,K), || - ||o) a weaker
poinwise topology generating the space C,(X,K).

@ We know already that (C(X,K), | - ||) contains a
complemented subspace isomorphic to (co(N, K), || - ||)-

© Assume that an ultraregular space X contains an
non-trivial convergent sequence. Then C,(X,K) has a
complemented subspace isomorphic to ¢(N, K).

@ This motivates a natural question if C,(X,K) contains a
complemented copy of ¢o(N, K) (with the pointwise
topology of the space KV) for each infinite ultraregular
compact space.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



The answer is negative. In fact, we have the following fact
which combined with Theorem 4 answers in the negative the
above question.

There exists a compact ultraregular space X such that for

every sequence (u,) C L,(X,K) with pu,(f) —, 0 for every
f € Co(X,K), we have ||u,|| — 0.

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



The answer is negative. In fact, we have the following fact
which combined with Theorem 4 answers in the negative the
above question.

There exists a compact ultraregular space X such that for

every sequence (u,) C L,(X,K) with pu,(f) —, 0 for every
f € Co(X,K), we have ||u,|| — 0.

@ We provide more concrete situations illustrating above
general information.
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The answer is negative. In fact, we have the following fact
which combined with Theorem 4 answers in the negative the
above question.

There exists a compact ultraregular space X such that for

every sequence (u,) C L,(X,K) with pu,(f) —, 0 for every
f € Co(X,K), we have ||u,|| — 0.

@ We provide more concrete situations illustrating above
general information.

@ We propose the following theorem.
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A topological space is called extremally disconnected if it
is regular and the closure of every open set is open.
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A topological space is called extremally disconnected if it
is regular and the closure of every open set is open.

Theorem 6

Let X be an extremally disconnected compact space. Then
there exists no continuous linear surjection

T : Go(X,K) = (N, K). In particular, C,(X,K) has no
quotient isomorphic to ¢o(N, K) (and so, no complemented

subspace isomorphic to ¢o(N, K)).

JERZY KAKOL On metrizable subspaces and quotients of non-Archimedean sj



A topological space is called extremally disconnected if it
is regular and the closure of every open set is open.

Theorem 6

Let X be an extremally disconnected compact space. Then
there exists no continuous linear surjection

T : Go(X,K) = (N, K). In particular, C,(X,K) has no
quotient isomorphic to ¢o(N, K) (and so, no complemented
subspace isomorphic to ¢o(N, K)).

| A\

Corollary 7

Let D be a discrete space. Then C,(5D,K) has no quotient
isomorphic to co(N, K). In particular, C,(5N, K) has no
quotient isomorphic to co(N, K).
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@ A sequence (x,) C K is said to be relatively compact if
the set {x, : n € N} is relatively compact in K.
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@ A sequence (x,) C K is said to be relatively compact if
the set {x, : n € N} is relatively compact in K.

@ Denote by ((N, K) the space of all relatively compact
sequences in K and by ¢, (N, K) the space of all bounded
sequences in K with the topology of pointwise
convergence.
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@ A sequence (x,) C K is said to be relatively compact if
the set {x, : n € N} is relatively compact in K.

@ Denote by ((N, K) the space of all relatively compact
sequences in K and by ¢, (N, K) the space of all bounded
sequences in K with the topology of pointwise
convergence.

@ Clearly, £.(N,K) and /- (N, K) are linear subspace of the
Fréchet spaces KN and (N, K) C ((N,K) C ((N,K).
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@ A sequence (x,) C K is said to be relatively compact if
the set {x, : n € N} is relatively compact in K.

@ Denote by ((N, K) the space of all relatively compact
sequences in K and by ¢, (N, K) the space of all bounded
sequences in K with the topology of pointwise
convergence.

@ Clearly, £.(N,K) and /- (N, K) are linear subspace of the
Fréchet spaces KN and (N, K) C ((N,K) C ((N,K).

© Although Corollary 7 shows that for discrete space D the
space C,(D,K) has no quotient isomorphic to (N, K),
our next theorem describes concrete infinite-dimensional
metrizable quotients for spaces C,(8D,K) when D is an
infinite discrete space.
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Theorem 8

D — infinite discrete space. Then E = C,(8D,K) has an
inf.inite-dim. metrizable quotient: For each sequence F = (F,)
of non-empty, finite, pairwise disjoint F, C D,

F,| = oo and

Ye={f€E:Y f(x)=0 forevery n€ N},
x€Fp
E/YE is isomorphic to
(E(N,K) = {(Xoeq, 1602 : (1) € Le(N,K)} C K, where
G = (G,) is a partition of N,
quotient isomorphic to

ANEK) ={( Dy (1) € L(NK)}

2n=1<g<on

G| = |Fy|. In particular E has a
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@ If K is locally compact and Y is a compact subset of an
ultraregular space X, every continuous function
g : Y — K has an extension to some bounded continuous
function f : X — K. Hence
Go(X,K) — C,(Y,K), f — f|Y is a quotient map.
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@ If K is locally compact and Y is a compact subset of an
ultraregular space X, every continuous function
g : Y — K has an extension to some bounded continuous
function f : X — K. Hence
Go(X,K) — C,(Y,K), f — f|Y is a quotient map.

@ If K is locally compact, then we have the following
(N, K) = £oo(N,K) = ((N, K).
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@ If K is locally compact and Y is a compact subset of an
ultraregular space X, every continuous function
g : Y — K has an extension to some bounded continuous
function f : X — K. Hence
Go(X,K) — C,(Y,K), f — f|Y is a quotient map.

@ If K is locally compact, then we have the following
(N, K) = £oo(N,K) = ((N, K).

@ Let X be an infinite extremally disconnected compact
space. If K is locally compact, then C,(X,K) has an
infinite-dimensional metrizable quotient isomorphic to
(o (N, K).
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@ If K is locally compact and Y is a compact subset of an
ultraregular space X, every continuous function
g : Y — K has an extension to some bounded continuous
function f : X — K. Hence
Go(X,K) — C,(Y,K), f — f|Y is a quotient map.

@ If K is locally compact, then we have the following
(N, K) = £oo(N,K) = ((N, K).

@ Let X be an infinite extremally disconnected compact
space. If K is locally compact, then C,(X,K) has an
infinite-dimensional metrizable quotient isomorphic to
(o (N, K).

© D- infinite discrete space. If K is locally compact,
Co(8D,K) has a quotient isomorphic to ¢, (N, K). In
particular, C,(5D,Qq) has a quotient isomorphic to
l(N, Q) for any prime number q.
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Using Theorem 8 we have the following.
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Using Theorem 8 we have the following.

Theorem 9

Let D be an infinite discrete space. Then C,(8D,K) has a
quotient isomorphic to (.(N, K).
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Using Theorem 8 we have the following.

Theorem 9

Let D be an infinite discrete space. Then C,(8D,K) has a
quotient isomorphic to (.(N, K).

Corollary 10

| \

Let D be an infinite discrete space. Then for any prime
number q the space C,(5D, C,) has a quotient isomorphic to
the space ((N, C,).

A
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Using Theorem 8 we have the following.

Theorem 9

Let D be an infinite discrete space. Then C,(8D,K) has a
quotient isomorphic to (.(N, K).

| \

Corollary 10

Let D be an infinite discrete space. Then for any prime
number q the space C,(5D, C,) has a quotient isomorphic to
the space ((N, C,).

A

Recall that Cj is not locally compact.
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A compact space X is called an Efimov space if X contains
neither non-trivial convergent sequences nor copies of SN.
The famous long-standing open question, called the Efimov
problem, asks whether there exists an Efimov space in ZFC.
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A compact space X is called an Efimov space if X contains
neither non-trivial convergent sequences nor copies of SN.
The famous long-standing open question, called the Efimov
problem, asks whether there exists an Efimov space in ZFC.
The only known examples of Efimov spaces have been found
under additional set-theoretic assumptions (for example,
diamond principle - combinatorial principle (Jensen (1972))
that holds in the constructible universe (L) and that implies
the continuum hypothesis) — Fedorchuk, Dow, Efimov,
Hart, De la Vega etc. Applying above results one gets:
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A compact space X is called an Efimov space if X contains
neither non-trivial convergent sequences nor copies of SN.
The famous long-standing open question, called the Efimov
problem, asks whether there exists an Efimov space in ZFC.
The only known examples of Efimov spaces have been found
under additional set-theoretic assumptions (for example,
diamond principle - combinatorial principle (Jensen (1972))
that holds in the constructible universe (L) and that implies
the continuum hypothesis) — Fedorchuk, Dow, Efimov,

Hart, De la Vega etc. Applying above results one gets:

If there exists an ultraregular compact space X such that
Co(X,K) does not admit an infinite-dimensional metrizable
quotient, then X must be Efimov.
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Example 12 below provides an ultraregular Efimov space X
(under ) for which the converse for Corollary 11 fails.
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Example 12 below provides an ultraregular Efimov space X
(under ) for which the converse for Corollary 11 fails.

Under ¢ there exists ultraregular Efimov X such that

Co(X,K) has an inf.-dimensional metrizable quotient.
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Example 12 below provides an ultraregular Efimov space X
(under ) for which the converse for Corollary 11 fails.

Example 12

Under ¢ there exists ultraregular Efimov X such that
Co(X,K) has an inf.-dimensional metrizable quotient.

Proof.
There exists (¢) ultraregular compact hereditary separable X

| A

(so not containing SN) such that:
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Example 12 below provides an ultraregular Efimov space X
(under ) for which the converse for Corollary 11 fails.

Example 12

Under ¢ there exists ultraregular Efimov X such that
Co(X,K) has an inf.-dimensional metrizable quotient.

Proof.
There exists (¢) ultraregular compact hereditary separable X

| A

(so not containing SN) such that:
X does not contain non-trivial convergent sequences. X has a
base of clopen pairwise hemeomorphic sets. (De la Vega)
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Example 12 below provides an ultraregular Efimov space X
(under ) for which the converse for Corollary 11 fails.

Example 12

Under ¢ there exists ultraregular Efimov X such that
Co(X,K) has an inf.-dimensional metrizable quotient.

Proof.
There exists (¢) ultraregular compact hereditary separable X
(so not containing SN) such that:

X does not contain non-trivial convergent sequences. X has a
base of clopen pairwise hemeomorphic sets. (De la Vega)
Then we showed: X admits a sequence (K,) of infinite
compact subsets such that each K, contains two disjoint
subsets homeomorphic to K,,,1; which applies to show

C,(X,K) has an infinite-dimensional metrizable quotient.  []
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Problem 13

Let D be an infinite discrete space.
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Problem 13

Let D be an infinite discrete space.

@ Let q be a prime number. Does the space C,(3D, C,)
have a quotient isomorphic to (- (N,C,)?
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Problem 13

Let D be an infinite discrete space.
@ Let q be a prime number. Does the space C,(3D, C,)
have a quotient isomorphic to (- (N,C,)?

@ Does the space C,(5D,K) have a quotient isomorphic to
l+(N, K) for some not locally compact field K?
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Problem 13

Let D be an infinite discrete space.
@ Let q be a prime number. Does the space C,(3D, C,)
have a quotient isomorphic to (- (N,C,)?
@ Does the space C,(5D,K) have a quotient isomorphic to
l+(N, K) for some not locally compact field K?
@ Does the space C,(5D,K) have a quotient isomorphic to
loo(N, K) for every field K?
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