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1 K – non-trivially valued non-Archimedean complete

field.

2 For all α, β ∈ K we have |α + β| ≤ max{|α|, |β|}; if

additionally |α| 6= |β|, then |α + β| = max{|α|, |β|}.
3 E – linear space over K. A seminorm on E is a function

p : E → [0,∞) such that p(αx) = |α|p(x) for all

α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all

x , y ∈ E .

4 X – infinite ultraregular space i.e. an infinite Hausdorff

topological space such that the clopen subsets of X form

a basis for the topology of X . Cp(X ,K) is isomorphic to

some dense subspace of KX with the product topology.

Thus Cp(X ,K) is metrizable if and only if X is countable.
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Problem 1

Let X be an infinite ultraregular space. Does Cp(X ,K) admit

1 an infinite-dimensional [closed] metrizable subspace?

2 an infinite-dimensional complemented metrizable

subspace?

3 an infinite-dimensional metrizable quotient?

We say that a locally convex space E contains a

complemented copy of a locally convex space F if there exist a

closed vector subspace G ⊂ E such that G is isomorphic to F

and a closed vector subspace L of E such that E = G ⊕ L.
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Let c0(N,K) be the space of all sequences in K that are

convergent to 0 with the topology of pointwise convergence.

Theorem 2

Let X be an infinite ultraregular space [with an infinite

compact subset ]. Then Cp(X ,K) has an infinite-dimensional

[closed ] metrizable subspace isomorphic to c0(N,K).

1 In particular, for any infinite ultraregular compact space X

the space Cp(X ,K) has an infinite-dimensional closed

metrizable subspace isomorphic to c0(N,K).
2 If X is discrete, Cp(X ,K) = KX , so any closed subspace

of Cp(X ,K) is isomorphic to KA for some A ⊂ X . Thus

any infinite-dimensional closed metrizable subspace of

Cp(X ,K) is isomorphic to KN; in particular, Cp(X ,K) has

no closed subspace isomorphic to c0(N,K).
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1 Let X be an ultraregular space. For a point x ∈ X let

δx : Cp(X ,K)→ K, δx(f ) = f (x), be the Dirac measure

concentrated at x . The linear hull Lp(X ,K) of the set

{δx : x ∈ X} in KCp(X ,K) can be identified with the

topological dual of Cp(X ,K).

2 Each µ ∈ Lp(X ,K) can be uniquely written as a linear

combination of Dirac measures µ =
∑

x∈F αxδx for some

finite subset F of X and some non-zero scalars αx for

x ∈ F ; the set F is called the support of µ and is denoted

by supp(µ). The real number maxx∈F |αx | will be denoted

by ‖µ‖; for µ = 0 we have supp(µ) = ∅ and ‖µ‖ = 0.
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Josefson-Nissenzweig theorem: For each

infinite-dimensional Banach space F over R or C there exists a

sequence (µn) in the topological dual F ∗ of F such that

‖µn‖ = 1, n ∈ N, with µn(f )→ 0 ∀ f ∈ F .

Definition 3

Let X be an infinite ultraregular space. We say that the space

Cp(X ,K) has the Josefson-Nissenzweig property (JNP in

short) if there exists a sequence (µn) ⊂ Lp(X ,K) such that

‖µn‖ = 1, n ∈ N, and µn(f )→n 0 for every f ∈ Cp(X ,K).
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Theorem 4

For inf. ultraregular X the following are equivalent:

1 Cp(X ,K) contains a complemented subspace isomorphic

to c0(N,K);

2 Cp(X ,K) has a quotient isomorphic to c0(N,K);

3 Cp(X ,K) admits a linear continuous map onto c0(N,K);

4 Cp(X ,K) has the JNP.

1 For each infinite ultraregular compact space X the

Banach space (C (X ,K), ‖ · ‖∞) contains a complemented

subspace isomorphic to (c0(N,K), ‖ · ‖∞).

2 Hence, there exists a sequence (µn) converging to zero in

the weak∗-topology with ‖µn‖ = 1 for all n ∈ N.
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1 Consider on the Banach space (C (X ,K), ‖ · ‖∞) a weaker

poinwise topology generating the space Cp(X ,K).

2 We know already that (C (X ,K), ‖ · ‖∞) contains a

complemented subspace isomorphic to (c0(N,K), ‖ · ‖∞).

3 Assume that an ultraregular space X contains an

non-trivial convergent sequence. Then Cp(X ,K) has a

complemented subspace isomorphic to c0(N,K).

4 This motivates a natural question if Cp(X ,K) contains a

complemented copy of c0(N,K) (with the pointwise

topology of the space KN) for each infinite ultraregular

compact space.
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The answer is negative. In fact, we have the following fact

which combined with Theorem 4 answers in the negative the

above question.

Corollary 5

There exists a compact ultraregular space X such that for

every sequence (µn) ⊂ Lp(X ,K) with µn(f )→n 0 for every

f ∈ Cp(X ,K), we have ‖µn‖ → 0.

1 We provide more concrete situations illustrating above

general information.

2 We propose the following theorem.
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A topological space is called extremally disconnected if it

is regular and the closure of every open set is open.

Theorem 6

Let X be an extremally disconnected compact space. Then

there exists no continuous linear surjection

T : Cp(X ,K)→ c0(N,K). In particular, Cp(X ,K) has no

quotient isomorphic to c0(N,K) (and so, no complemented

subspace isomorphic to c0(N,K)).

Corollary 7

Let D be a discrete space. Then Cp(βD,K) has no quotient

isomorphic to c0(N,K). In particular, Cp(βN,K) has no

quotient isomorphic to c0(N,K).
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1 A sequence (xn) ⊂ K is said to be relatively compact if

the set {xn : n ∈ N} is relatively compact in K.

2 Denote by `c(N,K) the space of all relatively compact

sequences in K and by `∞(N,K) the space of all bounded

sequences in K with the topology of pointwise

convergence.

3 Clearly, `c(N,K) and `∞(N,K) are linear subspace of the

Fréchet spaces KN and c0(N,K) ⊂ `c(N,K) ⊂ `∞(N,K).

4 Although Corollary 7 shows that for discrete space D the

space Cp(βD,K) has no quotient isomorphic to c0(N,K),

our next theorem describes concrete infinite-dimensional

metrizable quotients for spaces Cp(βD,K) when D is an

infinite discrete space.
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Theorem 8

D – infinite discrete space. Then E = Cp(βD,K) has an

inf.inite-dim. metrizable quotient: For each sequence F = (Fn)

of non-empty, finite, pairwise disjoint Fn ⊂ D, |Fn| → ∞ and

YF = {f ∈ E :
∑
x∈Fn

f (x) = 0 for every n ∈ N},

E/YF is isomorphic to

`Gc (N,K) = {(
∑

s∈Gn
ys)
∞
n=1 : (ys) ∈ `c(N,K)} ⊂ KN, where

G = (Gn) is a partition of N, |Gn| = |Fn|. In particular E has a

quotient isomorphic to

`0c(N,K) = {(
∑

2n−1≤s<2n

ys)
∞
n=1 : (ys) ∈ `c(N,K)}.
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YF = {f ∈ E :
∑
x∈Fn

f (x) = 0 for every n ∈ N},

E/YF is isomorphic to

`Gc (N,K) = {(
∑

s∈Gn
ys)
∞
n=1 : (ys) ∈ `c(N,K)} ⊂ KN, where

G = (Gn) is a partition of N, |Gn| = |Fn|. In particular E has a

quotient isomorphic to

`0c(N,K) = {(
∑

2n−1≤s<2n

ys)
∞
n=1 : (ys) ∈ `c(N,K)}.
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1 If K is locally compact and Y is a compact subset of an

ultraregular space X , every continuous function

g : Y → K has an extension to some bounded continuous

function f : X → K. Hence

Cp(X ,K)→ Cp(Y ,K), f → f |Y is a quotient map.
2 If K is locally compact, then we have the following

`0c(N,K) = `∞(N,K) = `c(N,K).
3 Let X be an infinite extremally disconnected compact

space. If K is locally compact, then Cp(X ,K) has an

infinite-dimensional metrizable quotient isomorphic to

`∞(N,K).

4 D- infinite discrete space. If K is locally compact,

Cp(βD,K) has a quotient isomorphic to `∞(N,K). In

particular, Cp(βD,Qq) has a quotient isomorphic to

`∞(N,Qq) for any prime number q.
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Using Theorem 8 we have the following.

Theorem 9

Let D be an infinite discrete space. Then Cp(βD,K) has a

quotient isomorphic to `c(N,K).

Corollary 10

Let D be an infinite discrete space. Then for any prime

number q the space Cp(βD,Cq) has a quotient isomorphic to

the space `c(N,Cq).

Recall that Cq is not locally compact.
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A compact space X is called an Efimov space if X contains

neither non-trivial convergent sequences nor copies of βN.

The famous long-standing open question, called the Efimov

problem, asks whether there exists an Efimov space in ZFC.

The only known examples of Efimov spaces have been found

under additional set-theoretic assumptions (for example,

diamond principle ♦- combinatorial principle (Jensen (1972))

that holds in the constructible universe (L) and that implies

the continuum hypothesis) – Fedorchuk, Dow, Efimov,

Hart, De la Vega etc. Applying above results one gets:

Corollary 11

If there exists an ultraregular compact space X such that

Cp(X ,K) does not admit an infinite-dimensional metrizable

quotient, then X must be Efimov.
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Example 12 below provides an ultraregular Efimov space X

(under ♦) for which the converse for Corollary 11 fails.

Example 12

Under ♦ there exists ultraregular Efimov X such that

Cp(X ,K) has an inf.-dimensional metrizable quotient.

Proof.

There exists (♦) ultraregular compact hereditary separable X

(so not containing βN) such that

:

X does not contain non-trivial convergent sequences. X has a

base of clopen pairwise hemeomorphic sets. (De la Vega)

Then we showed: X admits a sequence (Kn) of infinite

compact subsets such that each Kn contains two disjoint

subsets homeomorphic to Kn+1; which applies to show

Cp(X ,K) has an infinite-dimensional metrizable quotient.
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Problem 13

Let D be an infinite discrete space.

1 Let q be a prime number. Does the space Cp(βD,Cq)

have a quotient isomorphic to `∞(N,Cq)?

2 Does the space Cp(βD,K) have a quotient isomorphic to

`∞(N,K) for some not locally compact field K?

3 Does the space Cp(βD,K) have a quotient isomorphic to

`∞(N,K) for every field K?
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