The p-adic Mehta Integral: Formulas, Functional Equations, and Combinatorics

Joe Webster
University of Oregon

May 25, 2021

A statistical model of electrostatics on a line: Setup

(1) Consider a system of N labeled point charges with random locations $x_{1}, \ldots, x_{N} \in \mathbb{R}$. Call each tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ a microstate.

A statistical model of electrostatics on a line: Setup

(1) Consider a system of N labeled point charges with random locations $x_{1}, \ldots, x_{N} \in \mathbb{R}$. Call each tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ a microstate.
(2) Fix a measurable function $E: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ that assigns each microstate a total energy $E(x)$.

A statistical model of electrostatics on a line: Setup

(1) Consider a system of N labeled point charges with random locations $x_{1}, \ldots, x_{N} \in \mathbb{R}$. Call each tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ a microstate.
(2) Fix a measurable function $E: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ that assigns each microstate a total energy $E(x)$.
(3) Assume the system is in thermal equilibrium with a heat reservoir at absolute temperature $T>0$.

A statistical model of electrostatics on a line: Setup

(1) Consider a system of N labeled point charges with random locations $x_{1}, \ldots, x_{N} \in \mathbb{R}$. Call each tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{R}^{N}$ a microstate.
(2) Fix a measurable function $E: \mathbb{R}^{N} \rightarrow[-\infty, \infty]$ that assigns each microstate a total energy $E(x)$.
(3) Assume the system is in thermal equilibrium with a heat reservoir at absolute temperature $T>0$.
(4) Fix the Boltzmann constant $k>0$ that makes $\frac{E(x)}{k T}$ dimensionless and define the inverse temperature parameter $\beta=\frac{1}{k T}$.

A statistical model of electrostatics on a line: Key idea

The energy E induces a probability distribution on the microstates:

$$
d \mathbb{P}_{\beta}(\boldsymbol{x})=\frac{1}{\mathcal{Z}_{N}(\beta)} e^{-\beta E(x)} d \boldsymbol{x} \quad \text { where } \quad \mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\beta E(\boldsymbol{x})} d \boldsymbol{x}
$$

A statistical model of electrostatics on a line: Key idea

The energy E induces a probability distribution on the microstates:

$$
d \mathbb{P}_{\beta}(\boldsymbol{x})=\frac{1}{\mathcal{Z}_{N}(\beta)} e^{-\beta E(x)} d \boldsymbol{x} \quad \text { where } \quad \mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\beta E(\boldsymbol{x})} d \boldsymbol{x}
$$

- Intuition: Low-energy states are more probable than high-energy states. This disparity becomes more pronounced as $T \searrow 0$.

A statistical model of electrostatics on a line: Key idea

The energy E induces a probability distribution on the microstates:

$$
d \mathbb{P}_{\beta}(\boldsymbol{x})=\frac{1}{\mathcal{Z}_{N}(\beta)} e^{-\beta E(x)} d \boldsymbol{x} \quad \text { where } \quad \mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\beta E(\boldsymbol{x})} d \boldsymbol{x}
$$

- Intuition: Low-energy states are more probable than high-energy states. This disparity becomes more pronounced as $T \searrow 0$.
- Practical use: Taking expectations with $d \mathbb{P}_{\beta}$ for various β reveals the system's observable/macroscopic behavior.

A statistical model of electrostatics on a line: Key idea

The energy E induces a probability distribution on the microstates:

$$
d \mathbb{P}_{\beta}(\boldsymbol{x})=\frac{1}{\mathcal{Z}_{N}(\beta)} e^{-\beta E(x)} d \boldsymbol{x} \quad \text { where } \quad \mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\beta E(x)} d \boldsymbol{x}
$$

- Intuition: Low-energy states are more probable than high-energy states. This disparity becomes more pronounced as $T \searrow 0$.
- Practical use: Taking expectations with $d \mathbb{P}_{\beta}$ for various β reveals the system's observable/macroscopic behavior.
- Important task: Determine the domain and explicit form of the canonical partition function \mathcal{Z}_{N}.

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

- It is the canonical partition function when $E(x)$ is the sum of...

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

- It is the canonical partition function when $E(x)$ is the sum of...
- harmonic potential energies $\frac{1}{2 \beta} x_{i}^{2}$ for $i=1,2, \ldots, N$ and
- \log-Coulomb potential energies $-\log \left|x_{i}-x_{j}\right|$ for $1 \leq i<j \leq N$.

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

- It is the canonical partition function when $E(x)$ is the sum of...
- harmonic potential energies $\frac{1}{2 \beta} x_{i}^{2}$ for $i=1,2, \ldots, N$ and
- \log-Coulomb potential energies $-\log \left|x_{i}-x_{j}\right|$ for $1 \leq i<j \leq N$.
- Dyson and Mehta encountered $\mathcal{Z}_{N}(\beta)$ in random matrix theory and computed it for $\beta=1,2,4$.

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

- It is the canonical partition function when $E(x)$ is the sum of...
- harmonic potential energies $\frac{1}{2 \beta} x_{i}^{2}$ for $i=1,2, \ldots, N$ and
- \log-Coulomb potential energies $-\log \left|x_{i}-x_{j}\right|$ for $1 \leq i<j \leq N$.
- Dyson and Mehta encountered $\mathcal{Z}_{N}(\beta)$ in random matrix theory and computed it for $\beta=1,2,4$.

Conjecture (Mehta and Dyson, early 1960's)

$$
\mathcal{Z}_{N}(\beta)=(2 \pi)^{N / 2} \prod_{j=1}^{N} \frac{\Gamma(1+j \beta / 2)}{\Gamma(1+\beta / 2)} \quad \text { if } \quad \operatorname{Re}(\beta)>-2 / N
$$

Example: log-Coulomb gas in a harmonic well

The Mehta integral is

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{R}^{N}} e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}} \prod_{i<j}\left|x_{i}-x_{j}\right|^{\beta} d \boldsymbol{x}
$$

- It is the canonical partition function when $E(x)$ is the sum of...
- harmonic potential energies $\frac{1}{2 \beta} x_{i}^{2}$ for $i=1,2, \ldots, N$ and
- \log-Coulomb potential energies $-\log \left|x_{i}-x_{j}\right|$ for $1 \leq i<j \leq N$.
- Dyson and Mehta encountered $\mathcal{Z}_{N}(\beta)$ in random matrix theory and computed it for $\beta=1,2,4$.

Theorem (Bombieri, late 1970's)

$$
\mathcal{Z}_{N}(\beta)=(2 \pi)^{N / 2} \prod_{j=1}^{N} \frac{\Gamma(1+j \beta / 2)}{\Gamma(1+\beta / 2)} \quad \text { if } \quad \operatorname{Re}(\beta)>-2 / N
$$

p-adic log-Coulomb gas

- Suppose the charges have random locations $x_{1}, \ldots, x_{N} \in \mathbb{Q}_{p}$ instead.

p-adic log-Coulomb gas

- Suppose the charges have random locations $x_{1}, \ldots, x_{N} \in \mathbb{Q}_{p}$ instead.
- Now \mathbb{Q}_{p}^{N} is the space of microstates $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$ with standard norm $\|\cdot\|_{p}$ and Haar measure $d x$ defined by

$$
\|\boldsymbol{x}\|_{p}=\max _{1 \leq i \leq N}\left|x_{i}\right|_{p} \quad \text { and } \quad \int_{\mathbb{Z}_{p}^{N}} d \boldsymbol{x}=1
$$

where $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$ is the ring of p-adic integers.

p-adic log-Coulomb gas

- Suppose the charges have random locations $x_{1}, \ldots, x_{N} \in \mathbb{Q}_{p}$ instead.
- Now \mathbb{Q}_{p}^{N} is the space of microstates $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$ with standard norm $\|\cdot\|_{p}$ and Haar measure $d \boldsymbol{x}$ defined by

$$
\|\boldsymbol{x}\|_{p}=\max _{1 \leq i \leq N}\left|x_{i}\right|_{p} \quad \text { and } \quad \int_{\mathbb{Z}_{p}^{N}} d \boldsymbol{x}=1
$$

where $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x|_{p} \leq 1\right\}$ is the ring of p-adic integers.

- Choose an analogue $V(\boldsymbol{x})$ of the total harmonic potential, so that $e^{-\beta V(\boldsymbol{x})}=\rho\left(\|\boldsymbol{x}\|_{p}\right)$ is "nice" (like $e^{-\frac{1}{2}\|\boldsymbol{x}\|^{2}}$ for $\boldsymbol{x} \in \mathbb{R}^{N}$) and define

$$
E(\boldsymbol{x})=V(\boldsymbol{x})-\sum_{i<j} \log \left|x_{i}-x_{j}\right|_{p}
$$

The p-adic Mehta integral

Main question:

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Q}_{p}^{N}} \rho\left(\|\boldsymbol{x}\|_{p}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}=? ? ?
$$

The p-adic Mehta integral

Main question:

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Q}_{p}^{N}} \rho\left(\|\boldsymbol{x}\|_{p}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}=? ? ?
$$

- Nice fact 1: It suffices to compute $\int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}$ because

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2} \beta\right)}\right) \cdot\left(1-p^{-\left(N+\binom{N}{2} \beta\right)}\right) \cdot \int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

The p-adic Mehta integral

Main question:

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Q}_{p}^{N}} \rho\left(\|\boldsymbol{x}\|_{p}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}=? ? ?
$$

- Nice fact 1: It suffices to compute $\int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}$ because

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2}^{\beta)}\right.}\right) \cdot\left(1-p^{-\left(N+\binom{N}{2} \beta\right)}\right) \cdot \int_{\mathbb{Z}_{\rho}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

- Nice fact 2: $V_{0}:=\left\{\boldsymbol{x} \in \mathbb{Z}_{p}^{N}: x_{i}=x_{j}\right.$ for some $\left.i<j\right\}$ has measure 0 , so we only need to do the integral over $\mathbb{Z}_{p}^{N} \backslash V_{0}$.

The p-adic Mehta integral

Main question:

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Q}_{p}^{N}} \rho\left(\|\boldsymbol{x}\|_{p}\right) \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}=? ? ?
$$

- Nice fact 1: It suffices to compute $\int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}$ because

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2} \beta\right)}\right) \cdot\left(1-p^{-\left(N+\binom{N}{2} \beta\right)}\right) \cdot \int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

- Nice fact 2: $V_{0}:=\left\{\boldsymbol{x} \in \mathbb{Z}_{p}^{N}: x_{i}=x_{j}\right.$ for some $\left.i<j\right\}$ has measure 0 , so we only need to do the integral over $\mathbb{Z}_{p}^{N} \backslash V_{0}$.
- Question: What do microstates $\boldsymbol{x} \in \mathbb{Z}_{p}^{N} \backslash V_{0}$ look like?

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like $\ldots \bmod 3^{0}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like $\ldots \bmod 3^{1}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like $\ldots \bmod 3^{2}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like $\ldots \bmod 3^{3}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like... $\bmod 3^{4}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like $\ldots \bmod 3^{5}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like... $\bmod 3^{6}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$

What a microstate $x \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ looks like... $\bmod 3^{7}$

$\{1,2,3,4,5,6,7,8,9\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{3,4,6,8\}$
$\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$
$\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\pitchfork=\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) \quad \text { and } \quad \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right):
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{aligned}
\pitchfork & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) \quad \text { and } \quad \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\} & \text { appeared } n_{0}=1 \text { time }
\end{aligned}
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{array}{rlrl}
\boldsymbol{\pitchfork} & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) & \text { and } & \\
\boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times }
\end{array}
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{aligned}
\pitchfork & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) & \text { and } & \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times } \\
\pitchfork_{2} & =\{5,7\}\{1,2,9\}\{6\}\{3,4,8\} & & \text { appeared } n_{2}=1 \text { time }
\end{aligned}
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{aligned}
\boldsymbol{\pitchfork} & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) \quad \text { and } & & \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times } \\
\pitchfork_{2} & =\{5,7\}\{1,2,9\}\{6\}\{3,4,8\} & & \text { appeared } n_{2}=1 \text { time } \\
\pitchfork_{3} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\} & & \text { appeared } n_{3}=2 \text { times }
\end{aligned}
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{array}{rlrl}
\pitchfork & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) \quad \text { and } & \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times } \\
\pitchfork_{2} & =\{5,7\}\{1,2,9\}\{6\}\{3,4,8\} & & \text { appeared } n_{2}=1 \text { time } \\
\pitchfork_{3} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\} & & \text { appeared } n_{3}=2 \text { times } \\
\pitchfork_{4} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\} & & \text { appeared forever after. }
\end{array}
$$

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{aligned}
\pitchfork & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) \quad \text { and } & & \boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times } \\
\pitchfork_{2} & =\{5,7\}\{1,2,9\}\{6\}\{3,4,8\} & & \text { appeared } n_{2}=1 \text { time } \\
\pitchfork_{3} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\} & & \text { appeared } n_{3}=2 \text { times } \\
\pitchfork_{4} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\} & & \text { appeared forever after. }
\end{aligned}
$$

- Note: $p=3$ is not special here. Many \boldsymbol{x} in $\mathbb{Z}_{5}^{9}, \mathbb{Z}_{7}^{9}, \mathbb{Z}_{11}^{9}, \ldots$, etc., determine the same pair ($\boldsymbol{\Pi}, \boldsymbol{n}$) in the same way.

What does the diagram tell us?

- The microstate $\boldsymbol{x} \in \mathbb{Z}_{3}^{9} \backslash V_{0}$ determines a pair of tuples

$$
\begin{array}{rlrl}
\pitchfork & =\left(\pitchfork_{0}, \pitchfork_{1}, \pitchfork_{2}, \pitchfork_{3}, \pitchfork_{4}\right) & \text { and } & \\
\boldsymbol{n}=\left(n_{0}, n_{1}, n_{2}, n_{3}\right): \\
\pitchfork_{0} & =\{1,2,3,4,5,6,7,8,9\} & & \text { appeared } n_{0}=1 \text { time } \\
\pitchfork_{1} & =\{5,7\}\{1,2,9\}\{3,4,6,8\} & & \text { appeared } n_{1}=2 \text { times } \\
\pitchfork_{2} & =\{5,7\}\{1,2,9\}\{6\}\{3,4,8\} & & \text { appeared } n_{2}=1 \text { time } \\
\pitchfork_{3} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\} & & \text { appeared } n_{3}=2 \text { times } \\
\pitchfork_{4} & =\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\} & & \text { appeared forever after. }
\end{array}
$$

- Note: $p=3$ is not special here. Many \boldsymbol{x} in $\mathbb{Z}_{5}^{9}, \mathbb{Z}_{7}^{9}, \mathbb{Z}_{11}^{9}, \ldots$, etc., determine the same pair ($\boldsymbol{\Pi}, \boldsymbol{n}$) in the same way.
- For any p, let $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$ be the set of all $\boldsymbol{x} \in \mathbb{Z}_{p}^{9}$ that determine $(\pitchfork, \boldsymbol{n})$.

The value of $\prod_{i<j}\left|x_{i}-x_{j}\right|_{p}$ on $\mathcal{T}_{p}(\boldsymbol{\pitchfork}, \boldsymbol{n})$

The value of $\prod_{i<j}\left|x_{i}-x_{j}\right|_{p}$ on $\mathcal{T}_{p}(\boldsymbol{\dagger}, \boldsymbol{n})$

- If $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n}) \neq \varnothing$, then for every $\boldsymbol{x} \in \mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$ we have

$$
\left|x_{i}-x_{j}\right|_{p}=p^{1-\left(n_{0}+n_{1}+\cdots+n_{i j}\right)} \quad \text { for } 1 \leq i<j \leq 9
$$

where $\ell_{i j}=\max \left\{\ell: i\right.$ and j are in a common $\left.\lambda \in \pitchfork_{\ell}\right\}$.

The value of $\prod_{i<j}\left|x_{i}-x_{j}\right|_{p}$ on $\mathcal{T}_{p}(\boldsymbol{(}, \boldsymbol{n})$

- If $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n}) \neq \varnothing$, then for every $\boldsymbol{x} \in \mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$ we have

$$
\left|x_{i}-x_{j}\right|_{p}=p^{1-\left(n_{0}+n_{1}+\cdots+n_{e_{i j}}\right)} \quad \text { for } 1 \leq i<j \leq 9
$$

where $\ell_{i j}=\max \left\{\ell: i\right.$ and j are in a common $\left.\lambda \in \pitchfork_{\ell}\right\}$.

- This means any function that factors through $\boldsymbol{x} \mapsto\left(\left|x_{i}-x_{j}\right|_{p}\right)_{i<j}$ is constant on $\mathcal{T}_{p}(\boldsymbol{\Pi}, \boldsymbol{n})$, with value explicitly determined by $(\boldsymbol{\hbar}, \boldsymbol{n})$!

The value of $\prod_{i<j}\left|x_{i}-x_{j}\right|_{p}$ on $\mathcal{T}_{p}(\boldsymbol{\pitchfork}, \boldsymbol{n})$

- If $\mathcal{T}_{p}(\boldsymbol{\pitchfork}, \boldsymbol{n}) \neq \varnothing$, then for every $\boldsymbol{x} \in \mathcal{T}_{p}(\boldsymbol{(}, \boldsymbol{n})$ we have

$$
\left|x_{i}-x_{j}\right|_{p}=p^{1-\left(n_{0}+n_{1}+\cdots+n_{i j}\right)} \quad \text { for } 1 \leq i<j \leq 9
$$

where $\ell_{i j}=\max \left\{\ell: i\right.$ and j are in a common $\left.\lambda \in \pitchfork_{\ell}\right\}$.

- This means any function that factors through $\boldsymbol{x} \mapsto\left(\left|x_{i}-x_{j}\right|_{p}\right)_{i<j}$ is constant on $\mathcal{T}_{p}(\boldsymbol{(}, \boldsymbol{n})$, with value explicitly determined by $(\boldsymbol{\hbar}, \boldsymbol{n})$!
- In particular, the product of the factors $\left|x_{i}-x_{j}\right|_{p}$ has a nice form:

Key Fact 1 :

Every $\boldsymbol{x} \in \mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$ satisfies

$$
\prod_{i<j}\left|x_{i}-x_{j}\right|_{p}=p^{\binom{9}{2}} \prod_{\ell=0}^{3} p^{-\left[\sum_{\lambda \in \pitchfork_{\ell}}\binom{\# \lambda}{2}\right] n_{\ell}}=p^{-29}
$$

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

The measure of $\mathcal{T}_{p}(\pitchfork, n)$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\boldsymbol{h}}(t)$
$\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\}$	

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\boldsymbol{\infty}}(t)$
$\Pi_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\Pi_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\boldsymbol{\infty}}(t)$
$\boldsymbol{\Pi}_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\boldsymbol{\Pi}_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	$(t-1)_{2-1}$
$\boldsymbol{H}_{2}=\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$	

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\pitchfork}(t)$
$\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\pitchfork_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	$(t-1)_{2-1}$
$\pitchfork_{2}=\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$	$(t-1)_{2-1},(t-1)_{3-1},(t-1)_{2-1}$
$\Pi_{3}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$	

The measure of $\mathcal{T}_{p}(\pitchfork, n)$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\boldsymbol{\omega}}(t)$
$\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\pitchfork_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	$(t-1)_{2-1}$
$\pitchfork_{2}=\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$	$(t-1)_{2-1},(t-1)_{3-1},(t-1)_{2-1}$
$\pitchfork_{3}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$	$(t-1)_{2-1}$
$\pitchfork_{4}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$	

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\boldsymbol{h}}(t)$
$\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\pitchfork_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	$(t-1)_{2-1}$
$\pitchfork_{2}=\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$	$(t-1)_{2-1},(t-1)_{3-1},(t-1)_{2-1}$
$\pitchfork_{3}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$	$(t-1)_{2-1}$
$\pitchfork_{4}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$	

$$
M_{\pitchfork}(t)=(t-1)_{2}^{2} \cdot(t-1)_{1}^{4}=(t-1)^{6}(t-2)^{2}
$$

The measure of $\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})$

We attach a polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$ to \pitchfork using falling factorials:

Partitions	Factors of $M_{\text {¢ }}(t)$
$\pitchfork_{0}=\{1,2,3,4,5,6,7,8,9\}$	$(t-1)_{3-1}$
$\pitchfork_{1}=\{5,7\}\{1,2,9\}\{3,4,6,8\}$	$(t-1)_{2-1}$
$内_{2}=\{5,7\}\{1,2,9\}\{6\}\{3,4,8\}$	$(t-1)_{2-1},(t-1)_{3-1},(t-1)_{2-1}$
$内_{3}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{3,8\}$	$(t-1)_{2-1}$
$\pitchfork_{4}=\{7\}\{5\}\{2\}\{1\}\{9\}\{6\}\{4\}\{8\}\{3\}$	
$M_{\text {¢ }}(t)=(t-1)_{2}^{2} \cdot(t-1$	${ }^{4}=(t-1)^{6}(t-2)^{2}$

Key Fact 2:

The set $\mathcal{T}_{p}(\boldsymbol{\Pi}, \boldsymbol{n})$ is compact and open with Haar measure

$$
M_{\pitchfork}(p) \cdot \prod_{\ell=0}^{3} p^{-\operatorname{rank}\left(\pitchfork_{\ell}\right) n_{\ell}}=(p-1)^{6}(p-2)^{2} \cdot p^{-27}
$$

Putting the Key Facts together

Putting the Key Facts together

For each partition \pitchfork and $\beta \in \mathbb{C}$ it is convenient to define

$$
E_{\pitchfork}(\beta):=\operatorname{rank}(\pitchfork)+\sum_{\lambda \in \pitchfork}\binom{\# \lambda}{2} \beta,
$$

for then if $\operatorname{Re}(\beta)$ is sufficiently large we have...

Putting the Key Facts together

For each partition \pitchfork and $\beta \in \mathbb{C}$ it is convenient to define

$$
E_{\pitchfork}(\beta):=\operatorname{rank}(\pitchfork)+\sum_{\lambda \in \pitchfork}\binom{\# \lambda}{2} \beta,
$$

for then if $\operatorname{Re}(\beta)$ is sufficiently large we have...
Key Fact $1+$ Key Fact 2

$$
\begin{aligned}
\sum_{\boldsymbol{n} \in \mathbb{Z}_{>0}^{4}} \int_{\mathcal{T}_{p}(\pitchfork, \boldsymbol{n})} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x} & =\sum_{\boldsymbol{n} \in \mathbb{Z}_{>0}^{4}} p^{\binom{9}{2} \beta} \cdot M_{\pitchfork}(p) \cdot \prod_{\ell=0}^{3} p^{-E_{\Phi_{\ell}}(\beta) n_{\ell}} \\
& =p^{\binom{9}{2} \beta} \cdot M_{\pitchfork}(p) \cdot \prod_{\ell=0}^{3} \frac{1}{p^{E_{\pitchfork_{\ell}}(\beta)}-1}
\end{aligned}
$$

Putting the Key Facts together

For each partition \pitchfork and $\beta \in \mathbb{C}$ it is convenient to define

$$
E_{\pitchfork}(\beta):=\operatorname{rank}(\pitchfork)+\sum_{\lambda \in \pitchfork}\binom{\# \lambda}{2} \beta
$$

for then if $\operatorname{Re}(\beta)$ is sufficiently large we have...
Key Fact $1+$ Key Fact 2

$$
\begin{aligned}
\sum_{\boldsymbol{n} \in \mathbb{Z}_{>0}^{4}} \int_{\mathcal{T}_{\rho}(\pitchfork, \boldsymbol{n})} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x} & =\sum_{\boldsymbol{n} \in \mathbb{Z}_{>0}^{4}} p^{\binom{9}{2} \beta} \cdot M_{\pitchfork}(p) \cdot \prod_{\ell=0}^{3} p^{-E_{\Phi_{\ell}}(\beta) n_{\ell}} \\
& =p^{\binom{9}{2} \beta} \cdot M_{\pitchfork}(p) \cdot \prod_{\ell=0}^{3} \frac{1}{p^{E_{\Pi_{\ell}}(\beta)}-1}
\end{aligned}
$$

*Punchline: Summing over all possible \pitchfork gives $\int_{\mathbb{Z}_{p}^{9}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}$!

Definition: Splitting chains

A tuple $\pitchfork=\left(\pitchfork_{0}, \ldots, \pitchfork_{L}\right)$ of partitions of $\{1,2, \ldots, N\}$ is called a splitting chain of order N and length $L(\pitchfork)=L$ if

$$
\{1,2, \ldots, N\}=\pitchfork_{0}>\pitchfork_{1}>\cdots>\pitchfork_{L}=\{1\}\{2\} \ldots\{N\}
$$

Definition: Splitting chains

A tuple $\pitchfork=\left(\pitchfork_{0}, \ldots, \pitchfork_{L}\right)$ of partitions of $\{1,2, \ldots, N\}$ is called a splitting chain of order N and length $L(\pitchfork)=L$ if

$$
\{1,2, \ldots, N\}=\pitchfork_{0}>\pitchfork_{1}>\cdots>\pitchfork_{L}=\{1\}\{2\} \ldots\{N\}
$$

Write \mathcal{S}_{N} for the set of all splitting chains of order N. Each $\pitchfork \in \mathcal{S}_{N}$ has:

Definition: Splitting chains

A tuple $\pitchfork=\left(\pitchfork_{0}, \ldots, \pitchfork_{L}\right)$ of partitions of $\{1,2, \ldots, N\}$ is called a splitting chain of order N and length $L(\pitchfork)=L$ if

$$
\{1,2, \ldots, N\}=\pitchfork_{0}>\pitchfork_{1}>\cdots>\pitchfork_{L}=\{1\}\{2\} \ldots\{N\}
$$

Write \mathcal{S}_{N} for the set of all splitting chains of order N. Each $\pitchfork \in \mathcal{S}_{N}$ has:

- a monic degree $N-1$ multiplicity polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$,

Definition: Splitting chains

A tuple $\pitchfork=\left(\pitchfork_{0}, \ldots, \pitchfork_{L}\right)$ of partitions of $\{1,2, \ldots, N\}$ is called a splitting chain of order N and length $L(\pitchfork)=L$ if

$$
\{1,2, \ldots, N\}=\pitchfork_{0}>\pitchfork_{1}>\cdots>\pitchfork_{L}=\{1\}\{2\} \ldots\{N\}
$$

Write \mathcal{S}_{N} for the set of all splitting chains of order N. Each $\pitchfork \in \mathcal{S}_{N}$ has:

- a monic degree $N-1$ multiplicity polynomial $M_{\pitchfork}(t) \in \mathbb{Z}[t]$,
- a family of exponents $\left\{E_{\pitchfork_{\ell}}\right\}_{\ell=0}^{L(\mathrm{~m})-1}$, and

Definition: Splitting chains

A tuple $\pitchfork=\left(\pitchfork_{0}, \ldots, \pitchfork_{L}\right)$ of partitions of $\{1,2, \ldots, N\}$ is called a splitting chain of order N and length $L(\pitchfork)=L$ if

$$
\{1,2, \ldots, N\}=\pitchfork_{0}>\pitchfork_{1}>\cdots>\pitchfork_{L}=\{1\}\{2\} \ldots\{N\}
$$

Write \mathcal{S}_{N} for the set of all splitting chains of order N. Each $\pitchfork \in \mathcal{S}_{N}$ has:

- a monic degree $N-1$ multiplicity polynomial $M_{\boldsymbol{\omega}}(t) \in \mathbb{Z}[t]$,
- a family of exponents $\left\{E_{\mathrm{m}_{\ell}}\right\}_{\ell=0}^{L(\mathrm{M})-1}$, and
- an associated rational expression

$$
J_{\pitchfork, t}(\beta):=M_{\pitchfork}(t) \cdot \prod_{\ell=0}^{L(\pitchfork)-1} \frac{1}{t^{E_{\hbar_{\ell}}(\beta)}-1} \in \mathbb{Q}\left(t, t^{\beta}\right)
$$

The value of the p-adic Mehta integral

Theorem (W., 2020)

The p-adic Mehta integral converges for $\operatorname{Re}(\beta)>-2 / N$ with value

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2}^{N}\right)}\right) \cdot\left(p^{\binom{N}{2} \beta}-p^{-N}\right) \cdot \sum_{\pitchfork \in \mathcal{S}_{N}} J_{\pitchfork, p}(\beta)
$$

The value of the p-adic Mehta integral

Theorem (W., 2020)

The p-adic Mehta integral converges for $\operatorname{Re}(\beta)>-2 / N$ with value

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2}^{N}\right)}\right) \cdot\left(p^{\binom{N}{2} \beta}-p^{-N}\right) \cdot \sum_{\pitchfork \in \mathcal{S}_{N}} J_{\pitchfork, p}(\beta)
$$

Note: The same strategy yields a more general formula for

$$
\int_{K^{N}} \rho(\|\boldsymbol{x}\|)\left(\max _{i<j}\left|x_{i}-x_{j}\right|\right)^{a}\left(\min _{i<j}\left|x_{i}-x_{j}\right|\right)^{b} \prod_{i<j}\left|x_{i}-x_{j}\right|^{s_{i j}} d \boldsymbol{x}
$$

where K is an arbitrary nonarchimedean local field.

The value of the p-adic Mehta integral

Theorem (W., 2020)

The p-adic Mehta integral converges for $\operatorname{Re}(\beta)>-2 / N$ with value

$$
\mathcal{Z}_{N}(\beta)=\left(\sum_{m \in \mathbb{Z}} \rho\left(p^{m}\right) p^{m\left(N+\binom{N}{2}^{\beta}\right)}\right) \cdot\left(p^{\binom{N}{2} \beta}-p^{-N}\right) \cdot \sum_{\pitchfork \in \mathcal{S}_{N}} J_{\pitchfork, p}(\beta)
$$

Note: The same strategy yields a more general formula for

$$
\int_{K^{N}} \rho(\|\boldsymbol{x}\|)\left(\max _{i<j}\left|x_{i}-x_{j}\right|\right)^{a}\left(\min _{i<j}\left|x_{i}-x_{j}\right|\right)^{b} \prod_{i<j}\left|x_{i}-x_{j}\right|^{s_{i j}} d \boldsymbol{x}
$$

where K is an arbitrary nonarchimedean local field. This provides the canonical partition function for mixed-charge gases and joint moments of the diameter $\max _{i<j}\left|x_{i}-x_{j}\right|$ and minimal particle spacing $\min _{i<j}\left|x_{i}-x_{j}\right|$.

Examples: $N=2,3,4$

$$
\sum_{\pitchfork \in \mathcal{S}_{2}} J_{\pitchfork, t}(\beta)=\frac{t-1}{t^{1+\beta}-1}
$$

Examples: $N=2,3,4$

$$
\begin{aligned}
& \sum_{\pitchfork \in \mathcal{S}_{2}} J_{\pitchfork, t}(\beta)=\frac{t-1}{t^{1+\beta}-1} \\
& \sum_{\pitchfork \in \mathcal{S}_{3}} J_{\pitchfork, t}(\beta)=\frac{(t-1)(t-2)}{t^{2+3 \beta}-1}+3 \cdot \frac{(t-1)^{2}}{\left(t^{2+3 \beta}-1\right)\left(t^{1+\beta}-1\right)}
\end{aligned}
$$

Examples: $N=2,3,4$

$$
\sum_{\pitchfork \in \mathcal{S}_{2}} J_{\mathrm{m}, t}(\beta)=\frac{t-1}{t^{1+\beta}-1}
$$

$$
\sum_{\pitchfork \in \mathcal{S}_{3}} J_{\pitchfork, t}(\beta)=\frac{(t-1)(t-2)}{t^{2+3 \beta}-1}+3 \cdot \frac{(t-1)^{2}}{\left(t^{2+3 \beta}-1\right)\left(t^{1+\beta}-1\right)}
$$

$$
\begin{aligned}
\sum_{\pitchfork \in \mathcal{S}_{4}} J_{\mathrm{m}, t}(\beta) & =\frac{(t-1)(t-2)(t-3)}{t^{3+6 \beta}-1}+4 \cdot \frac{(t-1)^{2}(t-2)}{\left(t^{3+6 \beta}-1\right)\left(t^{2+3 \beta}-1\right)}+6 \cdot \frac{(t-1)^{2}(t-2)}{\left(t^{3+6 \beta}-1\right)\left(t^{1+\beta}-1\right)} \\
& +3 \cdot \frac{(t-1)^{3}}{\left(t^{3+6 \beta}-1\right)\left(t^{2+2 \beta}-1\right)}+6 \cdot \frac{(t-1)^{3}}{\left(t^{3+6 \beta}-1\right)\left(t^{2+2 \beta}-1\right)\left(t^{1+\beta}-1\right)} \\
& +12 \cdot \frac{(t-1)^{3}}{\left(t^{3+6 \beta}-1\right)\left(t^{2+3 \beta}-1\right)\left(t^{1+\beta}-1\right)}
\end{aligned}
$$

A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

$$
\# \mathcal{S}_{N}=\Omega\left(\frac{(N!)^{2}}{(2 \ln (2))^{N} \cdot N^{1+\ln (2) / 3}}\right) \quad \text { as } \quad N \rightarrow \infty
$$

A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

$$
\# \mathcal{S}_{N}=\Omega\left(\frac{(N!)^{2}}{(2 \ln (2))^{N} \cdot N^{1+\ln (2) / 3}}\right) \quad \text { as } \quad N \rightarrow \infty
$$

We can set up an efficient alternative:

- Define $F_{0}(r, \beta):=1$ and $F_{1}(r, \beta):=1$ for all $\beta \in \mathbb{C}$ and all $r \in \mathbb{R}$

A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

$$
\# \mathcal{S}_{N}=\Omega\left(\frac{(N!)^{2}}{(2 \ln (2))^{N} \cdot N^{1+\ln (2) / 3}}\right) \quad \text { as } \quad N \rightarrow \infty
$$

We can set up an efficient alternative:

- Define $F_{0}(r, \beta):=1$ and $F_{1}(r, \beta):=1$ for all $\beta \in \mathbb{C}$ and all $r \in \mathbb{R}$
- For $N \geq 2, \operatorname{Re}(\beta)>-2 / N$, and $r \in \mathbb{R}$, recursively define

$$
F_{N}(r, \beta):=\sum_{k=1}^{N-1} \frac{k}{N} \cdot \frac{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2} \beta\right)\left(1-\frac{2 k}{N}\right)+1\right]\right)}{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2} \beta\right)-1\right]\right)} \cdot F_{k}(r, \beta) \cdot F_{N-k}(r, \beta)
$$

A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

$$
\# \mathcal{S}_{N}=\Omega\left(\frac{(N!)^{2}}{(2 \ln (2))^{N} \cdot N^{1+\ln (2) / 3}}\right) \quad \text { as } \quad N \rightarrow \infty
$$

We can set up an efficient alternative:

- Define $F_{0}(r, \beta):=1$ and $F_{1}(r, \beta):=1$ for all $\beta \in \mathbb{C}$ and all $r \in \mathbb{R}$
- For $N \geq 2, \operatorname{Re}(\beta)>-2 / N$, and $r \in \mathbb{R}$, recursively define

$$
F_{N}(r, \beta):=\sum_{k=1}^{N-1} \frac{k}{N} \cdot \frac{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2} \beta\right)\left(1-\frac{2 k}{N}\right)+1\right]\right)}{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2} \beta\right)-1\right]\right)} \cdot F_{k}(r, \beta) \cdot F_{N-k}(r, \beta)
$$

- Note: If N and r are fixed, $\beta \mapsto F_{N}(r, \beta)$ is holomorphic

A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

$$
\# \mathcal{S}_{N}=\Omega\left(\frac{(N!)^{2}}{(2 \ln (2))^{N} \cdot N^{1+\ln (2) / 3}}\right) \quad \text { as } \quad N \rightarrow \infty
$$

We can set up an efficient alternative:

- Define $F_{0}(r, \beta):=1$ and $F_{1}(r, \beta):=1$ for all $\beta \in \mathbb{C}$ and all $r \in \mathbb{R}$
- For $N \geq 2, \operatorname{Re}(\beta)>-2 / N$, and $r \in \mathbb{R}$, recursively define

$$
F_{N}(r, \beta):=\sum_{k=1}^{N-1} \frac{k}{N} \cdot \frac{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2} \beta\right)\left(1-\frac{2 k}{N}\right)+1\right]\right)}{\sinh \left(\frac{r}{2}\left[\left(N+\binom{N}{2}^{\beta}\right)-1\right]\right)} \cdot F_{k}(r, \beta) \cdot F_{N-k}(r, \beta)
$$

- Note: If N and r are fixed, $\beta \mapsto F_{N}(r, \beta)$ is holomorphic
- Note: If N and β are fixed, $r \mapsto F_{N}(r, \beta)$ is even and smooth

An efficient formula

Recall: The p-adic Mehta Integral with $N \geq 2$ and $\rho=\mathbf{1}_{[0,1]}$ has the form

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

and converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$.

An efficient formula

Recall: The p-adic Mehta Integral with $N \geq 2$ and $\rho=\mathbf{1}_{[0,1]}$ has the form

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Z}_{p}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

and converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$. In this case...

Theorem (Sinclair and W., 2021)

The value of the integral can be computed efficiently via

$$
\mathcal{Z}_{N}(\beta)=N!\cdot p^{\frac{1}{2}\binom{N}{2} \beta} \cdot F_{N}(\log (p), \beta)
$$

An efficient formula

Recall: The p-adic Mehta Integral with $N \geq 2$ and $\rho=\mathbf{1}_{[0,1]}$ has the form

$$
\mathcal{Z}_{N}(\beta)=\int_{\mathbb{Z}_{P}^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

and converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$. In this case...

Theorem (Sinclair and W., 2021)

The value of the integral can be computed efficiently via

$$
\mathcal{Z}_{N}(\beta)=N!\cdot p^{\frac{1}{2}\binom{N}{2} \beta} \cdot F_{N}(\log (p), \beta)
$$

Corollary (The $p \rightarrow 1$ Limit and $p \mapsto p^{-1}$ Functional Equation)
The value of $\mathcal{Z}_{N}(\beta)$ extends to a smooth function of $p \in(0, \infty)$ satisfying

$$
\lim _{p \rightarrow 1} \mathcal{Z}_{N}(\beta)=N!\cdot F_{N}(0, \beta) \quad \text { and }\left.\quad \mathcal{Z}_{N}(\beta)\right|_{p \mapsto p^{-1}}=p^{-\binom{N}{2} \beta} \cdot \mathcal{Z}_{N}(\beta)
$$

Grand canonical partition functions

- Suppose the gas also exchanges particles with the reservoir with "fugacity parameter" f

Grand canonical partition functions

- Suppose the gas also exchanges particles with the reservoir with "fugacity parameter" f
- N is no longer constant, so we replace \mathcal{Z}_{N} by a grand canonical partition function, defined for $\beta \geq 0$ and $f \in \mathbb{C}$ by

$$
\mathcal{Z}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}(\beta) \frac{f^{N}}{N!}
$$

Grand canonical partition functions

- Suppose the gas also exchanges particles with the reservoir with "fugacity parameter" f
- N is no longer constant, so we replace \mathcal{Z}_{N} by a grand canonical partition function, defined for $\beta \geq 0$ and $f \in \mathbb{C}$ by

$$
\mathcal{Z}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}(\beta) \frac{f^{N}}{N!}
$$

- Similarly, for log-Coulomb gases in $p \mathbb{Z}_{p}$ we define

$$
\mathcal{Z}^{\circ}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}^{\circ}(\beta) \frac{f^{N}}{N!} \quad \text { where } \quad \mathcal{Z}_{N}^{\circ}(\beta):=\int_{\left(p \mathbb{Z}_{p}\right)^{N}} \prod_{i<j}\left|x_{i}-x_{j}\right|_{p}^{\beta} d \boldsymbol{x}
$$

The pth Power Law

Theorem (Sinclair, 2020)
The grand canonical partition function for log-Coulomb gas in \mathbb{Z}_{p} satisfies

$$
\mathcal{Z}(\beta, f)=\left(\mathcal{Z}^{\circ}(\beta, f)\right)^{p}
$$

for all $\beta \geq 0$ and $f \in \mathbb{C}$.

The pth Power Law

Theorem (Sinclair, 2020)

The grand canonical partition function for log-Coulomb gas in \mathbb{Z}_{p} satisfies

$$
\mathcal{Z}(\beta, f)=\left(\mathcal{Z}^{\circ}(\beta, f)\right)^{p}
$$

for all $\beta \geq 0$ and $f \in \mathbb{C}$.

Interpretation: A log-Coulomb gas in \mathbb{Z}_{p} exchanging particles with the reservoir is the same as p identical copies of a log-Coulomb gas in $p \mathbb{Z}_{p}$ exchanging particles with the reservoir.

The projective analogue: Setup

The projective line $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a compact metric space with...

The projective analogue: Setup

The projective line $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a compact metric space with...

- a transitive action by the projective linear group $P G L_{2}\left(\mathbb{Z}_{p}\right)$

The projective analogue: Setup

The projective line $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a compact metric space with...

- a transitive action by the projective linear group $P G L_{2}\left(\mathbb{Z}_{p}\right)$
- a unique $P G L_{2}\left(\mathbb{Z}_{p}\right)$-invariant Borel probability measure μ

The projective analogue: Setup

The projective line $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a compact metric space with...

- a transitive action by the projective linear group $P G L_{2}\left(\mathbb{Z}_{p}\right)$
- a unique $P G L_{2}\left(\mathbb{Z}_{p}\right)$-invariant Borel probability measure μ
- a $P G L_{2}\left(\mathbb{Z}_{p}\right)$-invariant metric δ, defined for $x=\left[u_{0}: u_{1}\right]$ and $y=\left[v_{0}: v_{1}\right]$ in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ by

$$
\delta(x, y):=\frac{\left|u_{0} v_{1}-u_{1} v_{0}\right|_{p}}{\max \left\{\left|u_{0}\right|_{p},\left|u_{1}\right|_{p}\right\} \cdot \max \left\{\left|v_{0}\right|_{p},\left|v_{1}\right|_{p}\right\}}
$$

The projective analogue: Setup

The projective line $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is a compact metric space with...

- a transitive action by the projective linear group $P G L_{2}\left(\mathbb{Z}_{p}\right)$
- a unique $P G L_{2}\left(\mathbb{Z}_{p}\right)$-invariant Borel probability measure μ
- a $P G L_{2}\left(\mathbb{Z}_{p}\right)$-invariant metric δ, defined for $x=\left[u_{0}: u_{1}\right]$ and $y=\left[v_{0}: v_{1}\right]$ in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ by

$$
\delta(x, y):=\frac{\left|u_{0} v_{1}-u_{1} v_{0}\right|_{p}}{\max \left\{\left|u_{0}\right|_{p},\left|u_{1}\right|_{p}\right\} \cdot \max \left\{\left|v_{0}\right|_{p},\left|v_{1}\right|_{p}\right\}}
$$

Definition (The projective p-adic Mehta Integral)

The canonical partition function for an N-particle log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ is given by

$$
\mathcal{Z}_{N}^{*}(\beta):=\int_{\left(\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)\right)^{N}} \prod_{i<j} \delta\left(x_{i}, x_{j}\right)^{\beta} d \mu^{N}
$$

The projective analogue: Rationality

Abbreviated Theorem (W., 2021)

The integral $\mathcal{Z}_{N}^{*}(\beta)$ converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$. Like $\mathcal{Z}_{N}(\beta)$, it is a finite sum over splitting chains of order N. Each summand is a rational function of p and $p^{-\beta}$ closely resembling $J_{\pitchfork, p}(\beta)$.

The projective analogue: Rationality

Abbreviated Theorem (W., 2021)

The integral $\mathcal{Z}_{N}^{*}(\beta)$ converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$. Like $\mathcal{Z}_{N}(\beta)$, it is a finite sum over splitting chains of order N. Each summand is a rational function of p and $p^{-\beta}$ closely resembling $J_{\mathrm{m}, p}(\beta)$.

Note: This is a special case of a general formula for the integral

$$
\int_{\left(\mathbb{P}^{1}(K)\right)^{N}} \prod_{i<j} \delta\left(x_{i}, x_{j}\right)^{s_{i j}} d \mu^{N}
$$

with K any nonarchimedean local field.

The projective analogue: Rationality

Abbreviated Theorem (W., 2021)

The integral $\mathcal{Z}_{N}^{*}(\beta)$ converges absolutely if and only if $\operatorname{Re}(\beta)>-2 / N$. Like $\mathcal{Z}_{N}(\beta)$, it is a finite sum over splitting chains of order N. Each summand is a rational function of p and $p^{-\beta}$ closely resembling $J_{\mathrm{m}, p}(\beta)$.

Note: This is a special case of a general formula for the integral

$$
\int_{\left(\mathbb{P}^{1}(K)\right)^{N}} \prod_{i<j} \delta\left(x_{i}, x_{j}\right)^{s_{i j}} d \mu^{N}
$$

with K any nonarchimedean local field. It converges absolutely for precisely the same $s_{i j} \in \mathbb{C}$ as the integral $\int_{K^{N}} \rho(\|\boldsymbol{x}\|) \prod_{i<j}\left|x_{i}-x_{j}\right|^{s_{i j}} d \boldsymbol{x}$, and the set of such $s_{i j}$ does not depend on K.

The projective analogue: An efficient formula

The functions F_{N} from before are also useful in the projective case:

The projective analogue: An efficient formula

The functions F_{N} from before are also useful in the projective case:
Theorem (W., 2021)
If $\operatorname{Re}(\beta)>-2 / N$, the value of $\mathcal{Z}_{N}^{*}(\beta)$ can be computed efficiently via
$\mathcal{Z}_{N}^{*}(\beta)=N!\sum_{k=0}^{N} \frac{\cosh \left(\frac{\log (\rho)}{2}\left(N+\binom{N}{2} \beta\right)\left(1-\frac{2 k}{N}\right)\right)}{\left(2 \cosh \left(\frac{\log (p)}{2}\right)\right)^{N}} \cdot F_{k}(\log (p), \beta) \cdot F_{N-k}(\log (p), \beta)$

The projective analogue: An efficient formula

The functions F_{N} from before are also useful in the projective case:
Theorem (W., 2021)
If $\operatorname{Re}(\beta)>-2 / N$, the value of $\mathcal{Z}_{N}^{*}(\beta)$ can be computed efficiently via
$\mathcal{Z}_{N}^{*}(\beta)=N!\sum_{k=0}^{N} \frac{\cosh \left(\frac{\log (\rho)}{2}\left(N+\binom{N}{2} \beta\right)\left(1-\frac{2 k}{N}\right)\right)}{\left(2 \cosh \left(\frac{\log (p)}{2}\right)\right)^{N}} \cdot F_{k}(\log (p), \beta) \cdot F_{N-k}(\log (p), \beta)$

Corollary (The $p \rightarrow 1$ Limit and $p \mapsto p^{-1}$ Functional Equation)
The value of $\mathcal{Z}_{N}^{*}(\beta)$ extends to a smooth function of $p \in(0, \infty)$ satisfying

$$
\lim _{p \rightarrow 1} \mathcal{Z}_{N}^{*}(\beta)=N!\sum_{k=0}^{N} F_{k}(0, \beta) F_{N-k}(0, \beta)
$$

and $\left.\mathcal{Z}_{N}^{*}(\beta)\right|_{p \mapsto p^{-1}}=\mathcal{Z}_{N}^{*}(\beta)$.

The $(p+1)$ th Power Law

There is also a grand canonical partition function for log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$:

$$
\mathcal{Z}^{*}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}^{*}(\beta) \frac{f^{N}}{N!}
$$

The $(p+1)$ th Power Law

There is also a grand canonical partition function for log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$:

$$
\mathcal{Z}^{*}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}^{*}(\beta) \frac{f^{N}}{N!}
$$

Theorem (W., 2020)

The grand canonical partition function for log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ satisfies

$$
\mathcal{Z}^{*}(\beta, f)=\left(\mathcal{Z}^{\circ}\left(\beta, \frac{p}{p+1} f\right)\right)^{p+1}
$$

for all $\beta \geq 0$ and $f \in \mathbb{C}$.

The $(p+1)$ th Power Law

There is also a grand canonical partition function for log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$:

$$
\mathcal{Z}^{*}(\beta, f):=\sum_{N=0}^{\infty} \mathcal{Z}_{N}^{*}(\beta) \frac{f^{N}}{N!}
$$

Theorem (W., 2020)

The grand canonical partition function for log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ satisfies

$$
\mathcal{Z}^{*}(\beta, f)=\left(\mathcal{Z}^{\circ}\left(\beta, \frac{p}{p+1} f\right)\right)^{p+1}
$$

for all $\beta \geq 0$ and $f \in \mathbb{C}$.

Interpretation: A log-Coulomb gas in $\mathbb{P}^{1}\left(\mathbb{Q}_{p}\right)$ exchanging particles with the reservoir is the same as $p+1$ identical copies of a log-Coulomb gas in $p \mathbb{Z}_{p}$ exchanging particles with the reservoir.

