
p-Adic Noncommutative Torus and the Hall Effect

Evgeny Zelenov

Steklov Mathematical Institute
International Conference

p-adic Mathematical physics and Applications
p-adic.2021

May, 2021



Content

I Classical Hall effect
I Integer QHE
I Fractional QHE
I Integer QHE and noncommutative geometry
I Noncommutative torus and p-adic noncommutative torus
I Fractional QHE and noncommutative geometry



The Classical Hall effect I

The first part of the lecture will be devoted to a brief and very
simplified introduction to the theory of the Hall effect. 1.
Consider a particle of mass m and charge −e in a magnetic field B .
Equation of motion:

m
dv

dt
= −ev × B.

1Edwin Hall (1879). “On a New Action of the Magnet on Electric Currents”.
American Journal of Mathematics. 2 (3): 287—92.



The Classical Hall effect I

A uniform magnetic field is directed along the axis z , B = (0, 0,B),
the particle moves in the plane (x , y , 0). It is easy to see that the
particle moves in circular orbits with a frequency of
ωB = eB

m (cyclotron frequency).
Now we turn on the electric field E in the direction of the axis x
and add "friction"(the Drude model):

m
dv

dt
== eE− ev × B− mv

τ
.

Here the parameter τ is the scattering time (the average time
between collisions).
By entering the notation for the current J = −nev, n is the density
of charge carriers, from the equilibrium condition we obtain the
relation:

J = σE,



The Classical Hall effect II

here σ is the conductivity matrix. We will be interested in the
inverse matrix ρ = σ−1 (resistivity matrix), which has the form:

ρ =

(
ρxx ρxy
−ρxy ρyy

)

ρxx =
m

ne2τ

ρxy =
1

ne
B = RHB



The Integer Quantum Hall effect I
The classical theory of the Hall effect gives a linear dependence of
the Hall resistivity on the magnetic field. In reality, the picture is
more complex2.



The Integer Quantum Hall effect II

The Hall resistivity, in contrast to the classical picture, changes in
jumps from one plateau to another. In this case, the value of the
resistance on the plateau is given by the expression:

ρxy =
2π~
e2

1

i
, i = 1, 2, 3, . . .

A plateau with the index i appears when the magnetic field takes
values

B =
n

i

2π~
e

=
n

i
Φ0.

2Klitzing, K.V., Dorda, G. and Pepper, M. (1980) Phys. Rev. Lett., 45, 494.
(Nobel prize 1985)



The Fractional Quantum Hall effect I

But this is not the end of the story.
The parameter i can, in fact, take rational values3 for example

i =
5

2
,

1

3
,

2

3
,

2

5
,

3

7
,

5

9
,

3

13
, . . .

Very clean samples were required to observe this effect.



The Fractional Quantum Hall effect II

3D.C. Tsui; H.L. Stormer; A.C. Gossard (1982). "Two-Dimensional
Magnetotransport in the Extreme Quantum Limit". Physical Review Letters. 48
(22): 1559 (Nobel prize with R. Laughlin 1998)



Landau levels I

Assume that the sample is clean enough (i.e. τ →∞) and the
electrons do not interact. Consider a one-particle Hamiltonian of
the form

H =
1

2m
(p + eA)2,

where A is the vector potential of the magnetic field, ∇× A = B.
We introduce the notation π = p + eA, then

[πx , πy ] = −ie~B,

and for operators

a =
1√
2eB

(πx − iπy ), a† =
1√
2eB

(πx + iπy )

the resulting commutation relations [a, a†] = 1 and



Landau levels II

H = ~ωB

(
a†a +

1

2

)
.

This is nothing but the Hamiltonian of the harmonic oscillator.
The energy levels are called Landau levels. They are degenerate,
in the quasi-classical approximation, the degeneracy of the levels is
given by the formula N = Φ/Φ0, where Φ is the magnetic flux
through the sample and Φ0 is the quantum of the magnetic flux.



TKNN invariants and IQHE I

Where does the topology in this problem come from4?
Consider a particle on a two-dimensional square lattice. In this case,
the momentum take values on the torus T2 (Brillouin zone). The
wave function of a particle in the Brillouin zone can be represented
in the Bloch form

ψk(x) = exp(ikx)uk(x),

the function uk(x) is periodic. Define U(1) Berry connection on T2

Ai (k) = −i〈uk|
∂

∂k i
|uk〉.

First Chern number is defined by

C = − 1

2π

∫
T2

d2kFxy ,



TKNN invariants and IQHE II

where
Fxy =

∂Ax

∂ky
− ∂Ay

∂kx
.

Chern number is an integer, C ∈ Z.
The surprising fact is as follows. Consider a model of electrons on a
lattice with a magnetic field and a periodic potential. Using the
Kubo formula, we calculate the Hall resistance.
The answer is as follows:

ρxy =
2π~
e2

1

C
.

The physical meaning of the first Chern number C - it is the
number of completely filled Landau levels (filling factor).
In other words – IQHE is a topological effect

4D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M.den. Nijs, Phys.
Rev. Lett. 49, 405 (1982)



Noncommutative torus T2
θ and IQHE I

In the framework of our lattice model, we consider the unitary
operators of magnetic translations:

Uj = exp

(
i

~
(pj + eAj)

)
, j = 1, 2.

These operators commute with the Hamiltonian, but do not
commute with each other:

U1U2 = exp(2πiθ)U2U1.

Here θ is the flux of the magnetic field B through the fundamental
region of the lattice.
C ∗ -algebra generated by a pair of unitary operators with such a
commutation relation is called the algebra of (irrational) rotations
of a circle.



Noncommutative torus T2
θ and IQHE II

On a dense subalgebra T2
θ operators of the form∑

an,mU
n
1U

m
2 , (|n|k + |m|k)|an,m| bound , k > 0

define the derivatives δj(Uk) = 0, k 6= j , δj(Uj) = 2πiUj and two
cocycles

τ0

(∑
an,mU

n
1U

m
2

)
= a0,0,

τ2(a0, a1, a2) = τ0
(
a0
(
δ1(a1)δ2(a2)− δ2(a1)δ1(a2)

))
.

Let E be a projector in T2
θ, then the equality is valid5

1

2πi
τ2(E ,E ,E ) = n ∈ Z,

in this case, the number n is uniquely determined from the equality
τ0(E ) = nθ( mod 1). This corresponds exactly to the first Chern



Noncommutative torus T2
θ and IQHE III

number. In this language, the formula for Hall conductivity can be
expressed as6

σH =
e2

h

1

2πi
τ2(Eµ,Eµ,Eµ),

where Eµ is a projector for energy levels less than the Fermi level.
This expression can be “rewritten” as follows:

σH =
e2

~
τ0 (EµdEµdEµ) ,

where dEµ = [F ,Eµ] and F – the Hilbert operator,
F = F ∗, F 2 = 1.

5A,Connes. Noncommutative geometry, 1994
6The noncommutative geometry of the quantum Hall effect. J. Bellissard,

A. van Elst and H. Schulz-Baldest, 1994)



My idea is to describe FQHE in the same geometric manner.
FQHE is a consequence of the interaction of electrons, the modern
description is based on the properties of quasiparticles with a
fractional charge (anions).7

The noncommutative torus T2
θ originated as the C ∗ - algebra

generated by a pair of unitary operators with the commutation
relation. There is another representation of this algebra.
On the circle T, the action of the group Z is given by rotation on
the angle θ: T 3 t → exp(2πiθ)t. This action is minimal (the orbit
of each point is dense).
In the space L2(T) consider C ∗-algebra generated by the operators
of multiplication by a continuous function on a circle and the
unitary rotation operator f (t)→ f (e2πiθt). This is exactly the
noncommutative torus T2

θ,

T2
θ = C (T) o Z.

7Laughlin, R. B. (2 May 1983). "Anomalous Quantum Hall Effect: An
Incompressible Quantum Fluid with Fractionally Charged Excitations". Physical
Review Letters. American Physical Society (APS). 50 (18): 1395–1398.



This algebra has a number of interesting properties.

I separable
I simple
I has unique trace state
I is AT - algebra, that is, T2

θ = A
⊗

C (T), where A is an
approximative-finite algebra.

I the set of trace values on projectors is its complete system of
invariants

I the set of trace values on projectors is
{m + nθ,m, n ∈ Z} ∩ [0, 1]

I K0(T2
θ) = Z2



Consider the p - adic analog of this algebra. On the set Zp of p -
adic integers, consider the action of the group Z of (rational)
integers, Zp 3 x → x + 1 (odometer). This action is minimal.
Consider the C ∗ -algebra T2

p generated by the operators (on the
space L2(Zp) ) multiplication by a continuous function and by the
unitary operator generated by the odometer. By construction, this
algebra is naturally considered an analog of the noncommutative
torus in the p - adic case.

T2
p = C (Zp) o Z.

The algebra T2
p has the same set of properties as the algebra T2

θ:
I separable
I simple
I has unique trace state
I is AT - algebra, that is, T2

p = A
⊗

C (T), where A is an
approximative-finite algebra.



I the set of trace values on projectors is its complete system of
invariants

I the set of trace values on projectors is { mpn ,m, n ∈ Z} ∩ [0, 1]

I K0(T2
p) = Z

[
1
p

]
The algebra A in the decomposition T2

p = A
⊗

C (T) is the UHF
(uniformly hyperfinite) algebra with the Glimm invariant (p∞), that
is, is the direct limit of matrix algebras Mpk with respect to the
natural diagonal embedding.

Mp → Mp2 → Mp3 → · · · → Mpk → · · ·

This is a well-known algebra (the Bunce-Deddens algebra).
Another representation of this algebra will be useful in the future.
Consider the group Ẑp of characters Zp. This group has the form

Ẑp = Z
[

1

p

]
/Z = Z(p∞).



This is the Prufer group. It is a direct limit of finite cyclic groups of
order pn.

Z/pZp → Z/p2Zp → · · · → Z/pnZp → · · ·

The finite cyclic group acts on the circle T by rotations, and thus
one can define the C ∗ - algebra

C (T) o Z/pnZ ≡ Mpn
⊗

C (T).

Thus:
T2
p = C (T) o Z(p∞).

Recall that the group Z(p∞) is the character group of the group
Zp, that is, it parametrizes the vectors of the orthonormal basis of
characters in the space L2(Zp). Define the mapping
Z(p∞)→ {−1, 1}:

Z(p∞) 3
∑ ak

pk
→
(
ak
p

)
,



(
ak
p

)
– Legendre symbol of the first nonzero term in the canonical

representation.
Space L2(Zp) is represented as a direct sum of the subspaces H−
and H+ spanned by characters with the corresponding value of the
mapping above. The Hilbert operator is defined by the formula
F = P+ − P−, where P± are orthogonal projectors on subspaces
H±, respectively. We define the differentiation operator on the
algebra of bounded operators du = [F , u].

Theorem
p 6= 2

τ (EdEdE ) ∈ Z
[

1

p

]
/Z

for any projector E ∈ T2
p.

It remains to combine the results for real and p-adic case. Let θ be
the irrational number, θ ∈ [0, 1].



Let G = R× Zp. The rational integers Z form a subgroup in G of
the form {(n, n), n ∈ Z}. A solenoid is the following group

S = G/Z.

This is the inverse limit of the sequence

T← T← · · · ← T← · · ·

with respect to p-winding homomorphisms: t → tp. Ŝ = Z
[
1
p

]
.

Let’s build the embedding of the group Ŝ in T,
Ŝ 3 s → exp(2πiθs) ∈ T and the corresponding algebra

Sθ = C (T) o Z
[

1

p

]
.

This algebra is called a noncommutative solenoid and has the same
nice set of properties.
Combining the statements for the algebras T2

θ and T2
p, we get the

statement:



Theorem

τ(EdEdE ) ∈ Z
[

1

p

]
.

Thus, the Hall conductivity, which in the framework of the
proposed approach has the form

σH =
e2

h

1

2πi
τ(EµdEµdEµ),

(where Eµ is a projector for energy levels less than the Fermi level)
can take fractional values (in dimensionless units).



Conclusions:
I (Noncommutative) Brillouin zone ≡ noncommutative solenoid.
I In the proposed theory, the Hall conductivity values can take

(in dimensionless units) both integer and fractional values
(inverse powers of a prime number p 6= 2).

I p-windings of the circle correspond to quasiparticles with a
fractional charge of 1/p.

I The theory can be generalized to more general solenoids and
obtain a wider range of conductivity values. Instead of
p-windings at each stage, we can consider an arbitrary positive
integer instead of p.

I It is open question for p = 2 (i.e. 5
2 filling factor).
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