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Covid-19 epidemic has some specialties. To match these

specialties, one has to develop new mathematical models.

AS0 Virus’ spread in population is constrained by the

hierarchic social cluster structure and it “respects” this

structure

AS1 Intensity of virus spreading is relatively insensible

to the total number of those who have already been in-

fected.

Now we discuss a few biological and social factors behind this feature

of the virus.

• Covid in air. The virus is not dangerous at the open air,

especially if people follow the recommendation to keep 1, 5 m

distance between them.
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• Asymptomatic individuals. As was recently announced

[?], WOH collected a lot of statistical data showing that asymp-

tomatic individuals transmit covid-19 virus to other people with

very low probability.US Centers for Disease Control and Preven-

tion estimates that about a third of coronavirus infections (35%)

are asymptomatic [?]. Hence, about 35% of infected people prac-

tically do not contribute in disease spread.

• No mass-events. Another important restriction supporting

AS1 is that even in Sweden, mass-events were forbidden, so no

public concerts, neither football matches.

• Superspreaders. Spread of coronavirus has the following fea-

ture - the presence of superspreaders of infection. One person

can infect really many people. Thus, single person’s contribu-

tion in disease spread can be essentially higher than contribution

of a few hundreds of usual asymptomatic individuals or many

presymptomatic individuals (see more on super-spreaders in ap-

pendix 2).
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In April-May 2020 for Swedish population we could assume that

AS2 The number of susceptible people S(t) is so large

comparing with the number I(t) of those who are infected

or the number R(t) of recovered that we can consider it

as constant, S(t) = const, and exclude it from model’s

dynamical equations.

This assumption implies that for an individual in population under con-

sideration the probability to become infected practically does not depend

on the number of recovered. The population is rather far from approach-

ing herd immunity and a disease spreader is surrounded (with the high

degree of approximation) by susceptible people. Thus the number of

recovered people R also can be excluded from dynamics.
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Denote the probability, for a person from social cluster C, to become

infected at the instance of time t by the symbol pI(C, t).

To write the evolution equation for probability pI(C, t), we impose

the additional assumption:

AS3 The distribution of social clusters in the society is

uniform: all clusters represented by balls of the same ra-

dius have the same measure that is equal to balls’ radius.

Mathematically AS3 is formalized through the use of the Haar mea-

sure µ on Qp. We understand that this is a strong restriction on the

social structure of society. But, the main reason for its imposing is just

simplification of mathematics. We can consider other distributions on

Qp assigning different weights to social clusters represented by balls of

the same radius. (We recall that any point of a ball can serve as its

center.)
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Probability to become infected as contextual probability

The quantity pI(C, t), the probability that a person belonging to

social cluster C can become infected at the instant of time t, is the

basic quantity of our model.

We point to the difference from the standard SIR-like models: pI(C, t)

is not the proportion of infected people in cluster C at

the instant of time t, i.e.,

(1) pI(C, t) 6=
NI(C, t)

N
,

where N is the number of people in C and NI(C, t) is the number of

infected people in C at the instant of time t. Thus, pI(C, t) has no

straightforward relation to the number of infected people NI(C, t).

Probability pI(C, t) is determined by context (C, t), the complex

of social, economic, and epidemiological conditions in cluster C at the

instant of time t, i.e., this is contextual probability.



7/41

JJ
II
J
I

Back

Close

Such probabilities are considered, e.g., in quantum theory [?], where it

is difficult, if possible at all, to introduce “hidden variables” determining

probabilities.

We remark that the situation in epidemiology, especially with respect

to the covid-19 epidemic, is similar to quantum physics and more general

quantum-like modeling in cognition, psychology, and decision making.

It is impossible to determine “hidden variables” behind many events.

People and social clusters of people reacts to covid-19 in very differ-

ent ways: there are bio-medical, social, and may be even psychological

hidden variables. Context (C, t) determines their distribution, but it

seems to be impossible to find these probability distributions of “hidden

variables” and their dependence on contexts.

One of the possibilities to interpret the probability to be-

come infected in context (C, t) is to use the subjective

interpretation of probability.

This interpretation became popular even in quantum physics, under

the name of Quantum Bayesianism (QBism).
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By this interpretation pI(C, t) is subjective probability that is as-

signed by an individual to the event that by visiting social cluster C one

would become infected.

She is an arbitrary individual, she need not belong to social cluster C.

We stress that a social cluster is a domain in social space, so it need

not be determined simply by geography (although geographic location

place the important role in determination of C).

Subjective probability is widely used in decision making as a part of

subjective utility theory.

During some epidemic, people can be considered as decision makers

who should estimate the probability to become infected by eating lunch

with colleagues or dinner with friends, going to shopping mall, visiting

Stockholm - for me, it was everyday decision problem during March-

June 2020, and I really estimated the probability to become infected by

covid-19.

For my American friend from New York, similar decisions were about

to go to Bronx or Manhattan, to barber (in June 2020) and so on.
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So, the subjective probability approach, although not so common in

epidemiology, seems to be really natural for individuals’ everyday decision

making.

The problem under consideration is by knowing probabilities to become

infected in social clusters Ci, i = 1, ...,M, at time t0, pI(Ci, t0),

to estimate the probability for cluster Ck at later instances of time

t > t0, pI(Ck, t).

Dynamics t → pI(Ck, t) is described by the master equation. To

write this equation, we have to consider conditional probabilities (also

known as transition probabilities):

p(Ck|Ci; t) is the probability, for a person in social clus-

ter Ck, to get infection from a person from cluster Ci.

These conditional probabilities represent intensities to become infected.

The master equation has the form:

(2)
d

dt
pI(Ck, t) =

∑
i6=k

[p(Ck|Ci; t)pI(Ci, t)−p(Ci|Ck; t)pI(Ck, t)].



10/41

JJ
II
J
I

Back

Close

By using infinitesimals, we can write this probability balance equation

in the form:

(3)

pI(Ck, t+dt) = pI(Ck)+
∑
i6=k

[p(Ck|Ci; t)pI(Ci, t)−p(Ci|Ck; t)pI(Ck, t)]dt.

The term p(Ck|Ci; t)pI(Ci, t) gives the intensity of transi-

tion of infection from cluster Ci to cluster Ck.

The probability to become infected in cluster Ck increases due to

transfer of infection from other clusters. Thus meaning of the positive

term in the right-hand side of (3) is clear.
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Negative term describes the “flow of infection” from Ck
to other clusters.

This flow generates decrease of the probability to become infected in

Ck. To describe the latter process, we should consider disease spreaders

and their transitions between social clusters, say from Bronx to Man-

hattan and vice verse.

The quantity p(Ck|Ci; t)pI(Ci, t) gives the probability that some-

body from social cluster Ck (Manhattan) would be infected by some-

body who comes to Ck from Cj (say from Bronx).

But at the same time some infected people from Manhattan, Ck can

go to Bronx, Ci, and infect people here. By being busy with infecting

people in Bronx, people from Manhattan cannot infect people in their

own social cluster, so the probability to become infected in Manhattan

decreases by p(Ci|Ck; t)pI(Ck, t)dt.



12/41

JJ
II
J
I

Back

Close

the mechanical model for the above process of infection

flow between social clusters.

Clusters are virus reservoirs, pI(C, t) gives the virus concen-

tration in cluster C at time t.

The presence of barriers increasing with hierarchy levels plays the cru-

cial role in dynamics of virus’ spread in population.

This probability is interpreted as in statistical mechanics of gases: as

the concentration of virions (virus particles, consisting of nucleic acid

surrounded by a protective coat of protein called a capsid) in cluster C

that is interpreted as reservoir of virions.



13/41

JJ
II
J
I

Back

Close

Now, we identify probabilities, P (C, t) = PI(C, t) : probability to

become infected is determined by concentration of virions in this cluster.

Of course, concentration of virions is coupled with concentration of

infected people, but not straightforwardly, since

• virions can live on various surfaces;

• covid-19 epidemic demonstrated the crucial role of superspreaders

- super-powerful sources covid-19 virions [?] (see appendix 2).

Then p(Ck|Ci; t) describes the intensity of transition of virions from

cluster Ci to cluster Ck.
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Hierarchic treelike geometry of social clusters

We represent the human society as a system of hierarchically coupled

(as a treelike structure) disjoint clusters.

Theory of ultrametric spaces is one of the basic mathematical tools

for representation of such clusters purpose.

Geometrically ultrametric spaces can be represented as trees with hi-

erarchic levels. Ultrametricity means that this metric satisfies so-called

strong triangle inequality:

(4) ρ(x, y) ≤ max{ρ(x, y), ρ(y, z)},

for any triple of points x, y, z.

Define balls as usual in metric spaces BR(a) = {x : ρp(x, a) ≤
R}, where a is a center of the ball and R > 0, is its radius.

We use the ultrametric balls to represent mathematically social clus-

ters, any cluster is slit into disjoint sub-cluster, each of the latter is

split into its own (disjoint) sub-clusters and so on. Inclusion relation

generates the hierarchy on the set of social clusters.
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In the works of the author and his collaborators, ultrametric spaces

(geometrically hierarchic trees) were applied for modeling of cognitive,

psychological, and social phenomena.

This modeling was based on invention of systems of discrete social

(or mental in cognitive studies) coordinates x = (xm) characterizing

(psycho-)social states of individuals. The treelike representation of so-

cial states is based on selection of hierarchically ordered social factors

enumerated by index m ∈ Z = {0,±1,±2, ...}.
The social importance of coordinates xm decreases with increase of

m and increases with decrease of m; e.g., social coordinate x0 is more

important than any xj, j > 0, but it less important than any xj, j <

0.

The coordinate x0 can be considered as a reference point. Depending

on context (say socio-economic or socio-epidemic) it can be shifted to

the right or to the left. Therefore it is convenient to use positive and

negative indexes determining two different directions of social impor-

tance of coordinates.
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We consider discrete social coordinates, generally, for each m, there

Nm possible values, xm = 0, 1, ..., Nm − 1, and Nm can vary es-

sentially with m. In the treelike representation, numbers Nm determine

the number of branches leaving vertexes.

Such trees are complicated and we restrict modeling to homogeneous

trees for that Nm does not depend on m. Moreover, by pure mathe-

matical reasons it is convenient to select Nm = p, where p > 1 is the

fixed prime number. We remark that the corresponding theory was de-

veloped even for arbitrary trees (ultrametric spaces), but it is essentially

more complicated [?, ?].

Thus, a social state x is represented by a vector of the form:

(5)

x = (x−n, ..., x−1, x0, x1, ..., xm), xj ∈ {0, 1, ..., p− 1}.

The vector representation of psychical, mental, and social states is very

common in psychology and sociology. The essence of our approach [?]-

[?] is the hierarchic ordering of coordinates leading to introduction of

ultrametric on the state space, see (??).
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For our purpose, modeling of epidemic, we can consider, for example,

the following hierarchic system of social coordinates; for simplicity,

let index m = 0, 1, 2, ..., so the coordinate x0 is the most im-

portant. It is natural to use it to denote states (e.g., Sweden, Russia,

USA,...); x1 can be used for age; x2 for chronic diseases, x3 gender,

x4 for race, x5 for the town of location, x6 for the district, x7 for pro-

fession, x8 for the level of social activity, x9 for the number of children,

and so on. We understand that such ranking of the basic social factors

related to the covid-19 epidemic is incomplete.

We also stress that hierarchy of social factors involved in the covid-19

epidemic can be selected depending on the state, i.e., for each state we

create its own system of social clustering coupled to this epidemic.

It is convenient to proceed with variable number of coordinates, i.e.,

not fix n and m. This gives the possibility to add new coordinates.

The space of such vectors can be represented by rational numbers of
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the form

(6)

x = x−np
−n+...+x−1p

−1+x0+x1p+...+xmp
m, xj ∈ {0, 1, ..., p−1}.

This is the basis of the number-theoretic representation of the space of

social states.
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In our model, p-adic balls represent social clusters corresponding to

fixing a few social coordinates. For example Cj = B1/p(a
j) = {x ∈

Zp : x0 = j}, in above epidemic coding Cj corresponds to fixing

age= j; Cji = B1/p(a
ji) = {x ∈ Zp : x0 = j, x1 = i},

age= j, gender = i for Swedish society or age= j, income level= i

for American society.

Social states, points of Qp, can be considered as balls of zero radius,

we call them elementary social clusters. Partitions of a ball into

disjoint balls of smaller radii corresponds to partition of a social cluster

into disjoint subclusters of deeper level of social hierarchy.

Now we turn to the algebraic representation of social states by rational

numbers, see (6). The space Qp endowed with ultrametric ρp can be

considered as completion of this set of rational numbers and algebraically

the elements of Qp can be represented by power series of the form

(7) x =
∑
k=n

xkp
k
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where xj ∈ {0, 1, ..., p − 1}, xn 6= 0, and n ∈ Z; so only finite

number of coordinates with negative index k can differ from zero.
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Modeling the virus spread with ultrametric diffusion

equation

An elementary social cluster (social state) given by a point of Qp is

a mathematical abstraction. Real clusters are represented by balls of

finite radii. Therefore it is interesting to study the evolution of average

probability for cluster C ≡ Bpn(0), n = 0,±1,±2, .... Under as-

sumption AS3, this quantity is represented as the integral with respect

to the Haar measure:

(8) pI(C, t) =

∫
C

pI(x, t)µ(dx).

Under the above assumptions on the social structure of population and

its interaction with the virus, we can write the following master equation

for probability pI(x, t),

(9)
∂pI(x, t)

∂t
=

∫
Qp

[p(x|y; t)pI(y, t)− p(y|x; t)pI(x, t)]µ(dy),
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where p(x|y; t) is the transition probability: the probability that the

virus being present in (elementary) cluster y would jump to cluster x.
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We suppose that this probability does not depend on time t and it

is symmetric, i.e., p(x|y) = p(y|x). Under these assumptions, the

master equation has the form

(10)
∂pI(x, t)

∂t
=

∫
Qp

p(x|y)[pI(y, t)− pI(x, t)]µ(dy).

It is natural to assume that the transition probability decreases with

increasing of the distance between two clusters, for example, that

(11) p(x|y) =
Cα

|x− y|1+α
p

, α > 0.

Here Cα > 0 is a normalization constant, by mathematical reasons it

is useful to select distance’s power larger than one. This function rather

slowly approaches zero if the distance between points goes to infinity.

Thus, the probability of transmission of infection from cluster y to

cluster x for socially distant clusters is practically zero.
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This property of the model implies slower (than in the stan-

dard models of disease spread) approaching herd immu-

nity: for a virus, it difficult to spread between socially

distant clusters.

We also remark that if the distance between points goes to zero, then

the probability (in fact, its density) approaches infinity. This implies

very rapid spread of infection in small social clusters.

In contrast to the standard SIR-like models, in our model the proba-

bility of transmission of infection depends crucially on social distance.
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Hence,

(12)
∂pI(x, t)

∂t
= Cα

∫
Qp

pI(y, t)− pI(x, t)
|x− y|1+α

p

µ(dy).

The integral operator in the right-hand side is the operator of fractional

derivativeDα (the Vladimirov operator), see [?]. Thus, the dynamics of

the probability to become infected for those belonging to an elementary

social cluster is described by the p-adic diffusion equation:

(13)
∂pI(x, t)

∂t
= DαpI(x, t).



26/41

JJ
II
J
I

Back

Close

To formulate the Cauchy problem, we have to add some initial prob-

ability distribution. We select the uniform probability distribution con-

centrated on a single ball, initially infected social cluster C,

pI(x, 0) =
1

µ(C)

{ 1, x ∈ C
0, x 6∈ C
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This equation and its various generalizations were studied by many

authors, for applications to physics and biology and by pure mathemat-

ical reasons (V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A.

Osipov).

We are interested in the relaxation regime, i.e., asymptotic of average

probability pI(C, t) for large t. We use the mathematical result of

above authors and obtain that the average probability has the power

behavior:

(14) pI(C, t) ∼ t−1/α, t→∞.

Thus the average probability to become infected in a social cluster

decreases rather slowly with time.

If parameter α is relatively large i.e., the virus transition probability

decreases very quickly with increase of the distance between social clus-

ters, then pI(C, t) decreases very slowly with time, it is practically

constant (see the upper graph at Fig. 1).
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If parameter α is relatively small, so the virus transition probability

decreases slowly with increase of the distance, then pI(C, t) decreases

sufficiently quickly with time (see the lowest graph at Fig. 1).

Consider now a kind of “integral immunity”, combination of innate and

adaptive components, defined as the probability of not become infected:

(15) pIm(x, t) = 1− pI(x, t)

and its average over social cluster represented by ball C,

(16) pIm(C, t) = 1− pI(C, t)

This function increases relatively slowly with time, see Fig. 2. Its as-

ymptotic behavior depends on the parameter α determining how rapidly

the transition probability between social clusters decreases with increase

of the distance between them. The lowest graph corresponds to large

value of α, i.e., infection transition probability decreases very quickly.

Then pIm(C, t) is practically constant, herd immunity increases very

slow.
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Parameter α combines two different factors:

• Traditional social constraints in population.

• Preventing measures imposed by state authorities.

It is clear that existing of traditional rigid social barriers in population

has similar effect as imposing of rigid preventing measures by authorities.

The parameter α can be represented as sum of two components,

α = αsoc + αpreventing.

For two populations (say countries) with large and small traditional

social barriers αsoc, respectively, the same dynamics of herd immunity

can be approached with small and large preventing barriers αpreventing,

respectively. ’

Say in Japan αsoc is relatively large and in Italy it is relatively small, so

mild preventing measures in Japan would correspond to rigid preventing

measures in Italy.
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Virus’ random walk on the hierarchic
social tree

There are given energy barriers ∆m separating valleys, movement

from one valley to another valley is constrained by necessity to jump

over a barrier between them.

This random walk model gives a good heuristic picture of the virus

spread, as jumping from one social cluster (valley) to another, where

clusters (valleys) are separated by social barriers (mountains) of different

heights.

Geometrically such random walk is represented as jumps on a tree

between the levels of social hierarchy.

Our model (selection of the transition probability in the form (11)) cor-

responds to barriers growing linearly with the number of elementary

jumps.
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The relaxation regime of the power form is obtained for the number of

hierarchy’s levels approaching infinity, i.e., for ideal trees with infinitely

long branches, as ultrametric spaces they are represented by Qp.

The virus plays the role of a system moving through barriers in models

of dynamics on energy landscapes.

In our case, these are social barriers between social clusters of popu-

lation.

The virus performs a complex random walk motion inside each social

cluster moving in its sub-clusters, goes out of it and spreads through

the whole population, sometimes the virus comes back to the original

cluster from other social clusters that have been infected from this initial

source of infection, and so on. During this motion the virus should cross

numerous social barriers.

Instead of virus walking through the social tree, we can consider a

person. A person of the social type x can interact with persons of other

social types. The temporal sequence of social contacts of some per-

sons can have a very complicated trajectory, visiting numerous clusters
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(but the probability of approaching a cluster depends crucially on social

barriers).

Let virus encounters a barrier of size ∆m, in hopping a distance m

(crossingm levels of hierarchy), where ∆1 < ∆2 < ... < ∆m < ....

It is supposed that barriers ∆m are the same for all social clusters,

i.e., they depend only on distance, but not on clusters. This assumption

reflects a kind of epidemic égalit’e of all social groups, the barriers

preventing spread of the virus that are imposed by state authorities are

the same for all social groups.

Consider the tree at Fig. 3. We identify the lengths of branches

between vertexes with magnitudes of barriers. Then the barriers on this

tree depend on clusters, so from this viewpoint the social tree is not

homogeneous.

Consider the energy landscape with a uniform barrier ∆, at every

branch point; that is, a jump of distance 1 involves surmounting a barrier

∆, of distance 2, a barrier 2∆, and so on. Hence, barriers linearly grow
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with distance m,

(17) ∆m = m∆,m = 1, 2, ....

It seems that this type of behavior is the most natural from the view-

point of social connections during the covid-19 epidemic in Sweden.

Barriers are sufficiently high, but they still are not walls as during the

rigid quarantine (as say in Italy, France, or Russia). For such linearly

increasing barriers one can derive the following asymptotic behavior (15)

of the relaxation probability [?],where in physics and biology the param-

eter

(18) q ≡ 1/α =
T log p

∆
,

Here the new parameter T has the meaning of temperature. Thus be-

havior of distance between valleys of the energy landscape is determined

by the size of the barrier for one-step jump ∆ and temperature. We
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rewrite formula (11) for transition probability by using these parameters:

(19) p(x|y) =
CT,∆

|x− y|1+∆/(T ln p)
p

.

In our model, we introduce the notion of social temperature T. As

in physics, this parameter calibrates energy, in our case social energy.

The latter represents the degree of social activity, the magnitude of

social actions. Although the notions of social temperature and energy

are not so well established as in physics, they can be useful in socio-

physical modeling.

Probability that the virus jumps from the elementary social cluster y

to another cluster x grows with growth of social temperature.

For high T, virus (or its spreader) easily move between social clusters.

If T << 1, the infection is practically confined in clusters. If barrier

∆ increases for the fixed parameter T, then the transition probability

decreases and vice verse.
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Starting with expression (19), we obtain the relaxation asymptotic in

the form:

(20) pI(C, t) ∼ t−
T log p

∆ , t→∞.

Thus, for large t, the average probability to become infected in social

cluster C decreases quicker with increase of social temperature T.

Decrease of the one-step jump barrier ∆ implies the same behavior.

We stress that such simple asymptotics with dependence only on one

level barrier ∆ is a consequence of the linear increase of barriers with

increase of difference between levels of social hierarchy. Immunity prob-

ability pIm(C, t) behaves in the opposite way.

It increases quicker with increase of social temperature and decrease

of the social barrier ∆.

The quantity ln p can be interpreted statistically as entropy of the

process of distribution of infection into p subclusters coupled to a vertex.

Suppose that a virus can spread with equal probability qi = 1/p into

each of the subclusters Ci0...ik−1,i of the cluster Ci0...ik−1. Entropy of
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this spreading equals to

(21) = −
p−1∑
i=1

qi ln qi = ln p.

In terms of spreading entropy asymptotics (??) can be rewritten as

(22) pIm(C, t) ∼ 1− t−T/∆, t→∞.

Thus, larger spreading entropy of the social cluster tree implies quicker

approaching herd immunity.

Our conjecture is that this formula is valid for more general process of

infection spread, with nonuniform distribution for probabilities qi.

We turn to representation of α = αsoc+αpreventing, its components

correspond to traditional social constraints in population and prevent-

ing measures introduced by authorities. In the same way, we represent

barrier ∆ = ∆soc + ∆preventing and obtain the formula:

(23) pIm(C, t) ∼ 1− t−T/(∆soc+∆preventing), t→∞.
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Since ∆soc is difficult to change, we shall consider it as constant and

to simplify the model, we set ∆soc = 0. Thus we play just with the

magnitude of the preventing barrier ∆preventing. We also assume that

the social temperature during the epidemic is constant (and relatively

small), again for simplicity we set T = 1. Then

(24) pIm(C, t) ∼ 1− t−/∆preventing, t→∞.

If ∆preventing is high (rigid anti-epidemic measures of the lock-down

type), then approaching herd immunity is very slow, practically impos-

sible. If ∆preventing is low, then herd immunity is approached rapidly.
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Our model describes only asymptotic behavior and we cannot calculte

cumulative death rates corresponding to preventing barriers of various

magnitudes. We shall plan to do this in a forthcoming paper.
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Figure 3. Treelike configuration space
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