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Local �elds. Let K be a non-Archimedean local �eld, that is a

non-discrete totally disconnected locally compact topological �eld.

It is well known that K is isomorphic either to a �nite extension of

the �eld Qp of p-adic numbers (if K has characteristic 0), or to the

�eld of formal Laurent series with coe�cients from a �nite �eld, if

K has a positive characteristic.

Any local �eld K is endowed with an absolute value | · |K , such that

|x |K = 0 if and only if x = 0, |xy |K = |x |K · |y |K ,
|x + y |K ≤ max(|x |K , |y |K ). Denote O = {x ∈ K : |x |K ≤ 1},
P = {x ∈ K : |x |K < 1}. O is a subring of K , and P is an ideal in

O containing such an element β that P = βO. The quotient ring

O/P is actually a �nite �eld; denote by q its cardinality. We will

always assume that the absolute value is normalized, that is

|β|K = q−1. The normalized absolute value takes the values qN ,
N ∈ Z. Note that for K = Qp we have β = p and q = p; the
p-adic absolute value is normalized.



Denote by S ⊂ O a complete system of representatives of the

residue classes from O/P . Any nonzero element x ∈ K admits the

canonical representation in the form of the convergent series

x = β−n
(
x0 + x1β + x2β

2 + · · ·
)

where n ∈ Z, |x |K = qn, xj ∈ S , x0 /∈ P . For K = Qp, one may

take S = {0, 1, . . . , p − 1}.
The additive group of any local �eld is self-dual, that is if χ is a

�xed non-constant complex-valued additive character of K , then

any other additive character can be written as χa(x) = χ(ax),
x ∈ K , for some a ∈ K . Below we assume that χ is a rank zero

character, that is χ(x) ≡ 1 for x ∈ O, while there exists such an

element x0 ∈ K that |x0|K = q and χ(x0) 6= 1.



Fourier transform:

f̃ (ξ) =

∫
K

χ(xξ)f (x) dx , ξ ∈ K ,

Inverse transform:

f (x) =

∫
K

χ(−xξ)f̃ (ξ) dξ.

Test functions from D(K ): locally constant functions with compact

supports.

D′(K ) - Bruhat-Schwartz distributions.



Vladimirov operator:

(Dαϕ) (x) = F−1 [|ξ|αK (F(ϕ))(ξ)] (x), α > 0,

ϕ ∈ D(K ).
The operator Dα can also be represented as a hypersingular

integral operator:

(Dαϕ) (x) =
1− qα

1− q−α−1

∫
K

|y |−α−1K [ϕ(x − y)− ϕ(x)] dy .

This expression makes sense for wider classes of functions.

As an operator in L2, Dα is selfadjoint, nonnegative with pure point

spectrum {qαN , N ∈ Z} of in�nite multiplicity.



Right inverse (α > 0):

(
D−αϕ

)
(x) = (fα∗ϕ)(x) =

1− q−α

1− qα−1

∫
K

|x−y |α−1K ϕ(y) dy , ϕ ∈ D(K ), α 6= 1,

and (
D−1ϕ

)
(x) =

1− q

q log q

∫
K

log |x − y |Kϕ(y) dy .

Then DαD−α = I on D(K ), if α 6= 1. This property remains valid

on Φ(K ) also for α = 1. Here

Φ(K ) =

ϕ ∈ D(K ) :

∫
K

ϕ(x) dx = 0

 .

is the so-called Lizorkin space.



Vladimirov Operator on Radial Functions

a) Radial eigenfunctions

Let u(x) = ψ(|x |) ∈ L2(K ),

Dαu = λu, λ = qαN , N ∈ Z,

and u is not identically zero. Then

u(x) =


cqN(1− q−1), if |x | ≤ q−N ;

−cqN−1, if |x | = q−N+1;

0, if |x | > q−N+1.

It is shown that u ∈ Φ(K ).
The only radial eigenfunction u with u(0) = 1 (an analog of the

function t → e−λt , t ∈ R) corresponds to c = q−N(1− q−1)−1.
We denote this function as

vN(|x |K ) =


1, if |x |K ≤ q−N ,

− 1
q−1 , if |x |K = q−N+1,

0, if |x |K ≥ q−N+2,



Below we interpret this function as an analog of the classical

exponential function x 7→ e−λx . Note that vN ∈ D(K ); this is a
purely non-Archimedean phenomenon re�ecting the unusual

topological property of K , its total disconnectedness. This function

is important for the theory of p-adic wave equation (K., 2008).



b) Explicit formula

Lemma
If a function u = u(|x |K ) is such that

m∑
k=−∞

qk
∣∣∣u(qk)

∣∣∣ <∞, ∞∑
l=m

q−αl
∣∣∣u(ql)

∣∣∣ <∞,
for some m ∈ Z, then for each n ∈ Z the hypersingular integral for

Dαϕ with ϕ(x) = u(|x |K ) exists for |x |K = qn, depends only on

|x |K , and

(Dαu)(qn) = dα

(
1− 1

q

)
q−(α+1)n

n−1∑
k=−∞

qku(qk)

+ q−αn−1
qα + q − 2

1− q−α−1
u(qn) + dα

(
1− 1

q

) ∞∑
l=n+1

q−αlu(ql)

where dα =
1− qα

1− q−α−1
.



The regularized integral

(Iαϕ)(x) = (D−αϕ)(x)− (D−αϕ)(0).

This is de�ned initially for ϕ ∈ D(K ). In fact,

(Iαϕ)(x) =
1− q−α

1− qα−1

∫
|y |K≤|x |K

(
|x − y |α−1K − |y |α−1K

)
ϕ(y) dy , α 6= 1,

and

(I 1ϕ)(x) =
1− q

q log q

∫
|y |K≤|x |K

(log |x − y |K − log |y |K )ϕ(y) dy .

In contrast to D−α, the integrals are taken, for each �xed x ∈ K ,

over bounded sets.



MAIN LEMMA

Suppose that

m∑
k=−∞

max
(
qk , qαk

) ∣∣∣u(qk)
∣∣∣ <∞, if α 6= 1,

m∑
k=−∞

|k |qk
∣∣∣u(qk)

∣∣∣ <∞, if α = 1,

for some m ∈ Z. Then Iαu exists, it is a radial function, and for

any x 6= 0,



(Iαu)(|x |K ) = q−α|x |αKu(|x |K )

+
1− q−α

1− qα−1

∫
|y |K<|x |K

(
|x |α−1K − |y |α−1K

)
u(|y |K ) dy , α 6= 1,

and

(I 1u)(|x |K ) = q−1|x |Ku(|x |K )

+
1− q

q log q

∫
|y |K<|x |K

(log |x |K − log |y |K ) u(|y |K ) dy .



Proposition (�right inverse�)

Suppose that for some m ∈ Z,

m∑
k=−∞

max
(
qk , qαk

) ∣∣∣v(qk)
∣∣∣ <∞, ∞∑

l=m

∣∣∣v(ql)
∣∣∣ <∞,

if α 6= 1, and

m∑
k=−∞

|k |qk
∣∣∣v(qk)

∣∣∣ <∞, ∞∑
l=m

l
∣∣∣v(ql)

∣∣∣ <∞,
if α = 1. Then there exists (DαIαv) (|x |K ) = v(|x |K ) for any

x 6= 0.



Proposition (�left inverse�)

Suppose that u(0) = 0,

|u(qn)| ≤ Cqdn, n ≤ 0;

|u(qn)| ≤ Cqhn, n ≥ 0,

where d > max(0, α− 1), 0 ≤ h < α, and h < α− 1, if α > 1.
Then the function w = Dαu satis�es, for any m ∈ Z, the
inequalities

m∑
k=−∞

max(qk , qαk)
∣∣∣w(qk)

∣∣∣ <∞, ∞∑
l=m

∣∣∣w(ql)
∣∣∣ <∞, α 6= 1;

m∑
k=−∞

|k | · qk
∣∣∣w(qk)

∣∣∣ <∞, ∞∑
l=m

|l | ·
∣∣∣w(ql)

∣∣∣ <∞, α = 1.

Moreover, IαDαu = u.



Corollary

Let v = v0 + u where v0 is a constant, u satis�es the conditions of

the above Proposition. Then IαDαv = v − v0.

EXAMPLE: the simplest Cauchy problem

Dαu(|x |K ) = f (|x |K ), u(0) = 0,

where f is a continuous function, such that

∞∑
l=m

∣∣∣f (ql)
∣∣∣ <∞, if α 6= 1, or

∞∑
l=m

l
∣∣∣f (ql)

∣∣∣ <∞, if α = 1.

The unique strong solution is u = Iαf . Therefore on radial functions,

the operators Dα and Iα behave like the Caputo-Dzhrbashyan fractional

derivative and the Riemann-Liouville fractional integral of real analysis.

(COUNTER)-EXAMPLE: Let f (|x |K ) ≡ 1, x ∈ K . Then

(Iαf ) (|x |K ) ≡ 0.



THE CAUCHY PROBLEM

a) Local solvability. Consider the equation

(Dαu) (|t|K ) = f (|t|K , u(|t|K )), 0 6= t ∈ K , (1)

with the initial condition

u(0) = u0 (2)

where the function f : qZ × R→ R satis�es the conditions

|f (|t|K , x)| ≤ M; (3)

|f (|t|K , x)− f (|t|K , y)| ≤ F |x − y |, (4)

for all t ∈ K , x , y ∈ R.



With the problem (1)-(2) we associate the integral equation

u(|t|K ) = u0 + Iαf (| · |K , u(| · |K ))(|t|K ). (5)

Note that, by the de�nition of Iα, in order to compute (Iαϕ)(|t|K )
for |t|K ≤ qm (m ∈ Z), one needs to know the function ϕ in the

same ball |t|K ≤ qm. Therefore local solutions of the equation (5)

make sense, in contrast to solutions of (1).

We call a solution u of (5), if it exists, a mild solution of the

Cauchy problem (1)-(2). By the above Corollary, a solution u of

(1)-(2), such that u− u0 satis�es the conditions of Proposition, is a

mild solution.

Theorem
Under the assumptions (3),(4), the problem (1)-(2) has a unique

local mild solution, that is the integral equation (5) has a solution

u(|t|K ) de�ned for |t|K ≤ qN where N ∈ Z is su�ciently small, and

another solution u(|t|K ), if it exists, coincides with u for |t|K ≤ qN

where N ≤ N.



b) Extension of solutions. Let us study the possibility to continue

the local solution constructed in Theorem 1 to a solution of the

integral equation (5) de�ned for all t ∈ K .

Suppose that the conditions of Theorem 1 are satis�ed, and we

obtained a local solution u(|t|K ), |t|K ≤ qN , N ∈ Z. Let α 6= 1. In
order to �nd a solution for |t|K = qN+1, we have to solve the

equation

u(qN+1) = u0 + v
(N)
0 + qαN f (qN+1, u(qN+1)) (6)

where

v
(N)
0 =

1− q−α

1− qα−1

∫
|y |K≤qN

(
q(N+1)(α−1) − |y |α−1K

)
f (|y |K , u(|y |K )) dy .

(7)

is a known constant. A similar equation can be written for α = 1.
Then the above procedure, if it is successful, is repeated for all

l > N.



Theorem
Suppose that the conditions of local existence theorem are satis�ed,

as well as the following Lipschitz condition:

|f (ql , x)− f (ql , y)| ≤ Fl |x − y |, x , y ∈ R, l ∈ Z, (8)

where 0 < Fl < q−αl for each l ∈ Z. Then a local solution of the

equation (5) admits a continuation to a global solution de�ned for

all t ∈ K .



c) From an integral equation to a di�erential one. Let us
study conditions, under which the above continuation procedure

leads to a solution of the problem (1)-(2). As before, we assume

the conditions (3),(4) and (8). In addition, we will assume that

|f (ql , x)| ≤ Cq−βl , l ≥ 1, for all x ∈ R, (9)

where β > α.

Theorem
Under the assumptions (3),(4), (8) and (9), the mild solution

obtained by the iteration process with subsequent continuation,

satis�es the equation (1).



Vladimirov operator on the unit ball

The operator Dα
O in the space L2(O) on the ring of integers (unit

ball) O is de�ned as follows. Extend a function ϕ ∈ D(O) (that is a
function ϕ ∈ D(K ) supported in O) onto K by zero. Apply Dα and

consider the resulting function on O. After the closure in L2(O) we

obtain a selfadjoint operator Dα
O with a discrete spectrum.

Denote by H the subspace in L2(O) consisting of radial functions.

The functions

e0(|x |K ) ≡ 1; eN(|x |K ) = (q − 1)1/2qN/2vN(|x |K ), N ≥ 1,

form an orthonormal basis in H.

Another (obvious) orthonormal basis in H is

fn(|x |K ) =

{
(1− 1

q )−1/2qn/2, if |x |K = q−n;

0, elsewhere,
n = 0, 1, 2, . . . .



Integration Operators
Let us study the integral part of the operator I 1, that is(

I 10 u
)

(x) =
1− q

q log q

∫
|y |K<|x |K

(log |x |K − log |y |K ) u(|y |K ) dy .

Recall that a compact operator is called a Volterra operator, if its

spectrum consists of the unique point λ = 0. An operator A is

called simple, if A and A∗ have no common nontrivial invariant

subspace, on which these operators coincide. It is known that a

Volterra operator A is simple, if and only if the equations Af = 0
and A∗f = 0 have no common nontrivial solutions.

Theorem
The operator I 10 in H is a simple Volterra operator with a rank 2

imaginary part J = 1
2i (A− A∗), such that tr J = 0.



Characteristic Function
Let us write the imaginary part J in the form

1

i

(
I 10 −

(
I 10
)∗)

u =
2∑

α,β=1

〈u, hα〉jαβhβ

where h1(|x |K ) =
q − 1

iq log q
(= const), h2(|x |K ) = − log |x |K , x ∈ O,

j = ( 0 1
1 0 ).

For the operator I 10 , we consider the 2× 2 characteristic

matrix-function of inverse argument

W (z−1) = E + izj
[
〈
(
E − zI 10

)−1
hα, hβ〉

]2
α,β=1

where E denotes both the unit operator in H and the unit matrix.



For the Volterra operator I 10 , W (z−1) is an entire matrix-function.

Theorem
Matrix elements of W (z−1) are entire functions of zero order.



The Laplace Type Transform
We call the function

ϕ̃(|ξ|K ) =

∫
K

v0(|xξ|K )ϕ(|x |K ) dx

the Laplace type transform of a radial function ϕ ∈ L1
loc

(K ). By the

dominated convergence theorem, ϕ̃ is continuous, bounded, and

ϕ̃(|ξ|K )→ 0, |ξ|K →∞.

If ϕ(|x |K ) ≡ const, then ϕ̃(|ξ|K ) ≡ 0.

We have

D̃αϕ(|ξ|K ) = |ξ|αK ϕ̃(|ξ|K ), ξ ∈ K .



Theorem (uniqueness)

If ϕ̃(|ξ|K ) ≡ 0, then ϕ(|x |K ) ≡ const.

Proposition

For all n ∈ Z,

ϕ̃(qn)− ϕ̃(qn+1) = q−n
[
ϕ(q−n)− ϕ(q−n+1)

]
.

Corollary

A function ϕ is (strictly) monotone, if and only if ϕ̃ is (strictly)

monotone.



Theorem (inversion formula)

For each n = 1, 2, . . .,

ϕ(qm) = ϕ(1) +
m−1∑
j=0

q−j
[
ϕ̃(q−j+1)− ϕ̃(q−j)

]
,

ϕ(q−m) = ϕ(1) +
m∑
j=1

qj
[
ϕ̃(qj)− ϕ̃(qj+1)

]
.
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